R. Krivonos, R. Burenin, E. Filippova, I. Lapshov, A. Tkachenko, A. Semena, I. Mereminskiy, V. Arefiev, A. Lutovinov, B. D. Ramsey, J. J. Kolodziejczak, D. A. Swartz, C.-T. Chen, S. R. Ehlert, A. Vikhlinin
{"title":"Inflight calibration of SRG/ART-XC point spread function at large off-axis angles","authors":"R. Krivonos, R. Burenin, E. Filippova, I. Lapshov, A. Tkachenko, A. Semena, I. Mereminskiy, V. Arefiev, A. Lutovinov, B. D. Ramsey, J. J. Kolodziejczak, D. A. Swartz, C.-T. Chen, S. R. Ehlert, A. Vikhlinin","doi":"10.1007/s10686-025-10008-w","DOIUrl":null,"url":null,"abstract":"<div><p>The knowledge of the point spread function (PSF) of the Mikhail Pavlinsky Astronomical Roentgen Telescope–X-ray Concentrator (ART-XC) telescope aboard the Spectrum-Roentgen-Gamma (<i>SRG</i>) observatory plays an especially crucial role in the detection of point X-ray sources in the all-sky survey and the studies of extended X-ray objects with low surface brightness. In this work, we calibrate the far off-axis shape of the ART-XC PSF using in-flight data of Sco X-1 and the Crab Nebula, in all-sky survey or scan mode, respectively. We demonstrate that the so-called “slewing” ART-XC PSF (in contrast to the on-axis PSF), in convolution with the detector pixels, is consistent with ground calibration performed at the Marshall Space Flight Center, and can be used to model the PSF up to large off-axis distances in all-sky survey or scan modes. The radial profile of the Crab Nebula in the 4−12 keV band shows an extended structure out to <span>\\( \\sim \\)</span>150” and is consistent with Sco X-1 at larger off-axis angles. Finally, we performed an analytic parametrization of the slewing ART-XC PSF as a function of energy.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 3","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10686-025-10008-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The knowledge of the point spread function (PSF) of the Mikhail Pavlinsky Astronomical Roentgen Telescope–X-ray Concentrator (ART-XC) telescope aboard the Spectrum-Roentgen-Gamma (SRG) observatory plays an especially crucial role in the detection of point X-ray sources in the all-sky survey and the studies of extended X-ray objects with low surface brightness. In this work, we calibrate the far off-axis shape of the ART-XC PSF using in-flight data of Sco X-1 and the Crab Nebula, in all-sky survey or scan mode, respectively. We demonstrate that the so-called “slewing” ART-XC PSF (in contrast to the on-axis PSF), in convolution with the detector pixels, is consistent with ground calibration performed at the Marshall Space Flight Center, and can be used to model the PSF up to large off-axis distances in all-sky survey or scan modes. The radial profile of the Crab Nebula in the 4−12 keV band shows an extended structure out to \( \sim \)150” and is consistent with Sco X-1 at larger off-axis angles. Finally, we performed an analytic parametrization of the slewing ART-XC PSF as a function of energy.
期刊介绍:
Many new instruments for observing astronomical objects at a variety of wavelengths have been and are continually being developed. Furthermore, a vast amount of effort is being put into the development of new techniques for data analysis in order to cope with great streams of data collected by these instruments.
Experimental Astronomy acts as a medium for the publication of papers of contemporary scientific interest on astrophysical instrumentation and methods necessary for the conduct of astronomy at all wavelength fields.
Experimental Astronomy publishes full-length articles, research letters and reviews on developments in detection techniques, instruments, and data analysis and image processing techniques. Occasional special issues are published, giving an in-depth presentation of the instrumentation and/or analysis connected with specific projects, such as satellite experiments or ground-based telescopes, or of specialized techniques.