Matthew J Rinella, Lance T Vermeire, Jay P Angerer
{"title":"Integrating experiments and monitoring reveals extreme sensitivity of invasive winter annuals to precipitation.","authors":"Matthew J Rinella, Lance T Vermeire, Jay P Angerer","doi":"10.1002/eap.3051","DOIUrl":"https://doi.org/10.1002/eap.3051","url":null,"abstract":"<p><p>In arid and semiarid systems of western North America, the most damaging invasive plants are winter annuals. These plants are destroying wildlife habitat, reducing livestock production, and increasing wildfires. Monitoring these plants for lasting population changes is challenging because their abundances vary widely from year to year. Some of this variation is due to weather, and quantifying effects of weather is important for distinguishing transcient from lasting population changes and understanding effects of climate change. Fall and spring weather affect germination and seed production of the current generation of plants and, therefore, impact population sizes of subsequent generations of plants. Extensive data are required to estimate effects of fall and spring weather on multiple generations of plants. We used Bayesian statistics to integrate experimental and long-term (31 years) monitoring data and quantify invasive annual grass [downy brome (Bromus tectorum L.) and Japanese brome (Bromus japonicus Thunb.)] responses to weather. Bromes ranged from nearly absent to comprising half of total biomass depending on three previous years of weather. Brome biomass increased with precipitation one, two, and three falls prior to measurement. Fall precipitation is projected to increase, and a mere 6.5 mm increase, which is just 2% of mean annual precipitation, would increase brome biomass 40% (28%, 54%) (mean [95% CI]) according to our model. Increased fall precipitation could favor many invasive winter annual grasses and forbs. Dry spring conditions reduced brome biomass the current year but increased brome biomass one and likely two (p = 0.08) years later, perhaps because dry conditions weakened perennial competitors. This finding casts doubt on several one-year precipitation experiments that concluded drier spring weather would reduce brome abundances. Integrating short-term experiments and long-term monitoring is useful for estimating invasive plant responses to the weather and characterizing their responses to climate change. Our research provides predictions of brome abundances that could improve monitoring efforts by helping land managers interpret population dynamics in the context of seasonal precipitation patterns.</p>","PeriodicalId":55168,"journal":{"name":"Ecological Applications","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142584930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eric Gilman, Milani Chaloupka, Nialangis Posanau, Marcelo Hidalgo, Sylvester Pokajam, Donald Papaol, Adrian Nanguromo, Francois Poisson
{"title":"Evidence to inform spatiotemporal management of a western Pacific Ocean tuna purse seine fishery","authors":"Eric Gilman, Milani Chaloupka, Nialangis Posanau, Marcelo Hidalgo, Sylvester Pokajam, Donald Papaol, Adrian Nanguromo, Francois Poisson","doi":"10.1002/eap.3054","DOIUrl":"https://doi.org/10.1002/eap.3054","url":null,"abstract":"Fisheries can profoundly impact co‐occurring species exposed to incidental capture. Spatiotemporal fisheries management holds substantial potential to balance socioeconomic benefits with ecological costs to threatened bycatch species. This study estimated the effect of the spatial and temporal distribution of effort by a western Pacific Ocean tuna purse seine fishery on catch rates of target and at‐risk species by fitting spatially explicit generalized additive multilevel regression models within a Bayesian inference framework to observer data. Mean field prediction surfaces defined catch rate hotspots for tunas, silky sharks, rays, and whale sharks, informing the design of candidate area‐based management strategies. Due to limited sample sizes, odontocete and marine turtle catch rate geospatial patterns were summarized using simple 2D hexagonal binning. Effort could be focused in two areas within core fishing grounds to reduce overlap with hotspots for silky sharks, rays, and whale sharks without affecting target catch. Effort could be shifted outside of core fishing areas to zones with higher target tuna catch rates to reduce overlap with hotspots for at‐risk species. Sparse and small marine turtle and whale shark hotspots occurred across the fishing grounds. Results did not identify opportunities for temporally dynamic spatial management to balance target and at‐risk catch rates. Research on the economic and operational viability of alternative spatial management strategies is a priority. A small subset of sets had disproportionately large odontocete captures. Real‐time fleet communication, move‐on rules, and avoiding sets on dolphin schools might reduce odontocete catch rates. Managing set association type and mesh size present additional opportunities to balance catch rates of at‐risk and target species. Employing output controls that effectively constrain the fishery would alter the spatial management strategy to focus fishing within zones with the lowest ratio of at‐risk bycatch to target tuna catch. Findings inform the design of alternative spatial management strategies to avoid catch rate hotspots of at‐risk species without compromising the catch of principal market species.","PeriodicalId":55168,"journal":{"name":"Ecological Applications","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142490812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luke Ozsanlav‐Harris, Aimée L. S. McIntosh, Larry R. Griffin, Geoff M. Hilton, Lei Cao, Jessica M. Shaw, Stuart Bearhop
{"title":"Contrasting effects of shooting disturbance on the movement and behavior of sympatric wildfowl species","authors":"Luke Ozsanlav‐Harris, Aimée L. S. McIntosh, Larry R. Griffin, Geoff M. Hilton, Lei Cao, Jessica M. Shaw, Stuart Bearhop","doi":"10.1002/eap.3032","DOIUrl":"https://doi.org/10.1002/eap.3032","url":null,"abstract":"Human−wildlife conflict is a global conservation issue, necessitating effective mitigation strategies. Hunting is a common management approach to reduce conflict, but the indirect consequences are often overlooked. Chronic hunting‐related disturbance can reduce fitness and redistribute species. In recent decades, goose−agricultural conflict has intensified due to increasing abundance and shifts towards agricultural foraging. On Islay, Scotland, escalating conflict culminated in shooting Greenland barnacle geese <jats:italic>Branta leucopsis</jats:italic> to reduce damage to agricultural grassland. In this study, we contrast the impact of shooting disturbance on the movement, behavior, energy expenditure and habitat selection of the target species (Greenland barnacle goose) and a vulnerable nontarget species (Greenland white‐fronted goose, <jats:italic>Anser albifrons flavirostris</jats:italic>) using biologging devices (target species: <jats:italic>n</jats:italic> = 33; nontarget species: <jats:italic>n</jats:italic> = 94). Both species were displaced by shooting, and greater distances were subsequently traveled by the target species (1.71 km when directly targeted). When disturbed at any distance, total daily movement increased significantly by 1.18 km for the target species but not for the nontarget species. The target species exhibited no accompanying change in diurnal energy expenditure (measured via accelerometery) but foraged in improved grasslands further from roads after shooting disturbance, where disturbance from all sources was likely lower. The significant increases in movement and changes in foraging site selection of the target species could reduce fitness but given the infrequency of shooting disturbances (0.09 per day) there is likely capacity for compensatory feeding to recoup energetic losses. The nontarget species expectedly showed no significant change in energy expenditure, behavior or habitat selection following shooting disturbance, suggesting mitigation strategies have been effective at minimizing fitness impacts. Refuge areas with a 3.5 km diameter (three times the maximum distance from shooting that displacement was detectable) could provide undisturbed foraging for the target species, minimizing compensatory feeding and further agricultural damage. Wildlife managers should, where possible, consider the fitness implications of shooting disturbance, and whether compensatory feeding and redistribution could hamper conflict mitigation. Management strategies should also include species‐specific monitoring and mitigation as we have demonstrated differing responses potentially due to imposed mitigation but also differing species ecology and “landscapes of fear.”","PeriodicalId":55168,"journal":{"name":"Ecological Applications","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142490405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Terrestrial land use signals on groundwater fauna beyond current protection buffers","authors":"Mara Knüsel, Roman Alther, Florian Altermatt","doi":"10.1002/eap.3040","DOIUrl":"https://doi.org/10.1002/eap.3040","url":null,"abstract":"Terrestrial and aquatic ecosystems are tightly linked, with direct implications for applied resource management and conservation. It is well known that human land use change and intensification of terrestrial systems can have large impacts on surface freshwater ecosystems. Contrastingly, the study and understanding of such land use impacts on groundwater communities is lagging behind. Both the impact strength of land use on groundwater communities and the spatial extents at which such interlinkages are operating are largely unknown, despite our reliance on groundwater for drinking water extraction as a key ecosystem service. Here, we analyzed groundwater amphipod occurrence from several hundred shallow groundwater aquifers used for drinking water extraction across a region of varying agricultural intensity and human population density in Switzerland. Despite drinking water extraction sites being generally built at locations with expected minimal aboveground impacts on water quality, we found a direct correlation between land use type and intensity within the surrounding catchment area and the locally measured nitrate concentrations, which is a direct proxy for drinking water quality. Furthermore, groundwater amphipods were more likely to be found at sites with higher forest coverage than at sites with higher crop and intensive pasture coverages, clearly indicating a tight connection between aboveground land use and groundwater biodiversity. Our results indicate that land use type effects on groundwater communities are most relevant and pronounced to spatial scales of about 400–1000 m around the groundwater sampling site. Importantly, the here identified spatial scale is 1.2‐ to 3‐fold exceeding the average extent of currently defined groundwater protection zones. We postulate that incorporating an ecosystem perspective into groundwater management strategies is needed for effective protection of groundwater quality and biodiversity.","PeriodicalId":55168,"journal":{"name":"Ecological Applications","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142449667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mina Anders,Catrin Westphal,Valerie M G Linden,Sina Weier,Peter J Taylor,Ingo Grass
{"title":"Complementary effects of pollination and biocontrol services enable ecological intensification in macadamia orchards.","authors":"Mina Anders,Catrin Westphal,Valerie M G Linden,Sina Weier,Peter J Taylor,Ingo Grass","doi":"10.1002/eap.3049","DOIUrl":"https://doi.org/10.1002/eap.3049","url":null,"abstract":"In many crops, both pollination and biocontrol determine crop yield, whereby the relative importance of the two ecosystem services can be moderated by the landscape context. However, additive and interactive effects of pollination and biocontrol in different landscape contexts are still poorly understood. We examined both ecosystem services in South African macadamia orchards. Combining observations and experiments, we disentangled their relative additive and interactive effects on crop production with variation in orchard design and landscape context (i.e., cover of natural habitat and altitude). Insect pollination increased the nut set on average by 280% (initial nut set) and 525% (final nut set), while biocontrol provided by bats and birds reduced the insect damage on average by 40%. Pollination services increased in orchards where macadamia tree rows were positioned perpendicular to orchard edges facing natural habitat. Biocontrol services decreased with elevation. Pest damage was reduced by higher cover of natural habitat at landscape scale but increased with elevation. Pollination and biocontrol are both important ecosystem services and complementary in providing high macadamia crop yield. Smart orchard design and the retention of natural habitat can simultaneously enhance both services. Conjoint management of ecosystem services can thus enable the ecological intensification of agricultural production.","PeriodicalId":55168,"journal":{"name":"Ecological Applications","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142447949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hayden W Bock,Peter M Groffman,Jed P Sparks,Frank S Rossi,Kyle G Wickings
{"title":"Soil animal communities demonstrate simplification without homogenization along an urban gradient.","authors":"Hayden W Bock,Peter M Groffman,Jed P Sparks,Frank S Rossi,Kyle G Wickings","doi":"10.1002/eap.3039","DOIUrl":"https://doi.org/10.1002/eap.3039","url":null,"abstract":"Urbanization profoundly impacts biodiversity and ecosystem function, exerting an immense ecological filter on the flora and fauna that inhabit it, oftentimes leading to simplistic and homogenous ecological communities. However, the response of soil animal communities to urbanization remains underexplored, and it is unknown whether their response to urbanization is like that of aboveground organisms. This study investigated the influence of urbanization on soil animal communities in 40 public parks along an urbanization gradient. We evaluated soil animal abundance, diversity, and community composition and related these measures to urban and soil characteristics at each park. The most urbanized parks exhibited reduced animal abundance, richness, and Shannon diversity. These changes were influenced by many variables underscoring the multifaceted influence of urbanization on ecological communities. Notably, contrary to our expectation, urbanization did not lead to community homogenization; instead, it acted stochastically, creating unique soil animal assemblages. This suggests that urban soil animal communities are concomitantly shaped by deterministic and stochastic ecological processes in urban areas. Our study highlights the intricate interplay between urbanization and soil animal ecology, challenging the notion of urban homogenization in belowground ecosystems and providing insight for managing and preserving belowground communities in urban areas.","PeriodicalId":55168,"journal":{"name":"Ecological Applications","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142447948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Reb L Bryant,Shan Kothari,Jeannine Cavender-Bares,Stephanie J Curran,Jake J Grossman,Sarah E Hobbie,Charlotte Nash,Grace C Neumiller,Craig R See
{"title":"Independent effects of tree diversity on aboveground and soil carbon pools after six years of experimental afforestation.","authors":"Reb L Bryant,Shan Kothari,Jeannine Cavender-Bares,Stephanie J Curran,Jake J Grossman,Sarah E Hobbie,Charlotte Nash,Grace C Neumiller,Craig R See","doi":"10.1002/eap.3042","DOIUrl":"https://doi.org/10.1002/eap.3042","url":null,"abstract":"Planting diverse forests has been proposed as a means to increase long-term carbon (C) sequestration while providing many co-benefits. Positive tree diversity-productivity relationships are well established, suggesting more diverse forests will lead to greater aboveground C sequestration. However, the effects of tree diversity on belowground C storage have the potential to either complement or offset aboveground gains, especially during early stages of afforestation when potential exists for large losses in soil C due to soil decomposition. Thus, experimental tests of the effects of planted tree biodiversity on changes in whole-ecosystem C balance are needed. Here, we present changes in above- and belowground C pools 6 years after the initiation of the Forests and Biodiversity experiment (FAB1), consisting of high-density plots of one, two, five, or 12 tree species planted in a common garden. The trees included a diverse range of native species, including both needle-leaf conifer and broadleaf angiosperm species, and both ectomycorrhizal and arbuscular mycorrhizal species. We quantified the effects of species richness, phylogenetic diversity, and functional diversity on aboveground woody C, as well as on mineral soil C accumulation, fine root C, and soil aggregation. Surprisingly, changes in aboveground woody C pools were uncorrelated to changes in mineral soil C pools, suggesting that variation in soil C accumulation was not driven by the quantity of plant litter inputs. Aboveground woody C accumulation was strongly driven by species and functional identity; however, plots with higher species richness and functional diversity accumulated more C in aboveground wood than expected based on monocultures. We also found weak but significant effects of tree species richness, identity, and mycorrhizal type on soil C accumulation. To assess the role of the microbial community in mediating these effects, we further compared changes in soil C pools to phospholipid fatty acid (PLFA) profiles. Soil C pools and accumulation were more strongly correlated with specific microbial clades than with total microbial biomass or plant diversity. Our results highlight rapidly emerging and microbially mediated effects of tree biodiversity on soil C storage in the early years of afforestation that are independent of gains in aboveground woody biomass.","PeriodicalId":55168,"journal":{"name":"Ecological Applications","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142439451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brent R Barry,Joseph D Holbrook,Jody C Vogeler,Lisa H Elliott,Matthew J Weldy,Damon B Lesmeister,Clinton Epps,Todd Wilson,Kerri T Vierling
{"title":"Using spaceborne LiDAR to reveal drivers of animal demography.","authors":"Brent R Barry,Joseph D Holbrook,Jody C Vogeler,Lisa H Elliott,Matthew J Weldy,Damon B Lesmeister,Clinton Epps,Todd Wilson,Kerri T Vierling","doi":"10.1002/eap.3048","DOIUrl":"https://doi.org/10.1002/eap.3048","url":null,"abstract":"Remote sensing can provide continuous spatiotemporal information about vegetation to inform wildlife habitat estimates, but these methods are often limited in availability or lack adequate resolution to capture the three-dimensional vegetative details critical for understanding habitat. The Global Ecosystem Dynamics Investigation (GEDI) is a spaceborne light detection and ranging system (LiDAR) that has revolutionized the availability of high-quality three-dimensional vegetation measurements of the Earth's temperate and tropical forests. To date, wildlife-related applications of GEDI data or GEDI-fusion products have been limited to estimate species habitat use, distribution, and diversity. Here, our goal was to expand the use of GEDI-based applications to wildlife demography by evaluating if GEDI data fusions could aid in characterizing demographic parameters of wildlife. We leveraged a recently published dataset of GEDI-fusion forest structures and capture-mark-recapture data to estimate the density and survival of two small mammal species, Humboldt's flying squirrel (Glaucomys oregonensis) and Townsend's chipmunk (Neotamias townsendii), from three studies in western Oregon spanning 2014-2021. We used capture histories in Huggins robust design models to estimate apparent annual survival and density as a derived parameter. We found strong support that both flying squirrel and chipmunk density were associated with GEDI-fusion forest structures of foliage height diversity and plant area volume density in the 5-10 m strata for flying squirrels and proportionately higher plant area volume density in the 0-20 m strata for chipmunks, as well as other spatiotemporal factors such as elevation. We found weak support that apparent annual survival was associated with GEDI-fusion forest structures for flying squirrels but not for chipmunks. We demonstrate further utility of these methods by creating spatially explicit density maps of both species that could aid management and conservation policies. Our work represents a novel application of GEDI data to evaluate wildlife demography and produce continuous spatially explicit density predictions for these species. We conclude that aspects of small mammal demography can be explained by forest structure as characterized via GEDI data fusions.","PeriodicalId":55168,"journal":{"name":"Ecological Applications","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Daniël van Denderen, Maider Plaza‐Morlote, Sandrine Vaz, Sander Wijnhoven, Angel Borja, Ulla Fernandez‐Arcaya, José M. González‐Irusta, Jørgen L. S. Hansen, Nikolaos Katsiaras, Andrea Pierucci, Alberto Serrano, Sofia Reizopoulou, Nadia Papadopoulou, Mattias Sköld, Christopher J. Smith, Henrik Nygård, Gert Van Hoey, Grete E. Dinesen, Elina A. Virtanen, Aurélien Boyé, Ana García‐Alegre, Juan Bellas, Stefan Bolam, Pablo Durán Muñoz, Mar Sacau, Giada Riva, Ellen Kenchington, Saša Raicevich, David Reid, Marie Julie Roux, Jan Geert Hiddink, Sebastian Valanko
{"title":"Complementarity and sensitivity of benthic state indicators to bottom‐trawl fishing disturbance","authors":"P. Daniël van Denderen, Maider Plaza‐Morlote, Sandrine Vaz, Sander Wijnhoven, Angel Borja, Ulla Fernandez‐Arcaya, José M. González‐Irusta, Jørgen L. S. Hansen, Nikolaos Katsiaras, Andrea Pierucci, Alberto Serrano, Sofia Reizopoulou, Nadia Papadopoulou, Mattias Sköld, Christopher J. Smith, Henrik Nygård, Gert Van Hoey, Grete E. Dinesen, Elina A. Virtanen, Aurélien Boyé, Ana García‐Alegre, Juan Bellas, Stefan Bolam, Pablo Durán Muñoz, Mar Sacau, Giada Riva, Ellen Kenchington, Saša Raicevich, David Reid, Marie Julie Roux, Jan Geert Hiddink, Sebastian Valanko","doi":"10.1002/eap.3050","DOIUrl":"https://doi.org/10.1002/eap.3050","url":null,"abstract":"Many indicators have been developed to assess the state of benthic communities and identify seabed habitats most at risk from bottom trawling disturbance. However, the large variety of indicators and their development and application under specific geographic areas and management contexts has made it difficult to evaluate their wider utility. We compared the complementarity/uniqueness, sensitivity, and selectivity of 18 benthic indicators to pressure of bottom trawling. Seventeen common datasets with broad regional representation covering a range of pressure gradients from bottom trawling disturbance (<jats:italic>n</jats:italic> = 14), eutrophication (<jats:italic>n</jats:italic> = 1), marine pollution (<jats:italic>n</jats:italic> = 1), and oxygen depletion (<jats:italic>n</jats:italic> = 1) were used for the comparison. The outcomes of most indicators were correlated to a certain extent with response to bottom trawling disturbance, and two complementary groups of indicators were identified: diversity‐based and biological trait‐based indicators. Trait‐based indicators that quantify the changes in relative abundance of sensitive taxa were most effective in identifying benthic community change in response to bottom trawling disturbance. None of the indicators responded to the trawling pressure gradient in all datasets, and some showed a response that were opposed to the theoretical expectation for some gradients. Indicators that showed clear responses to bottom trawling disturbance also showed clear responses in at least one other pressure gradient, suggesting those indicators are not pressure specific. These results emphasize the importance of selecting several indicators, at least one from each group (diversity and trait‐based), to capture the broader signals of change in benthic communities due to bottom trawling activities. Our systematic approach offers the basis from which scientific advisors and/or managers can select suitable combinations of indicators to arrive at a sensitive and comprehensive benthic status assessment.","PeriodicalId":55168,"journal":{"name":"Ecological Applications","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Émilie Jolin, Julien Arsenault, Julie Talbot, Mahmud Hassan, Line Rochefort
{"title":"Are pools created when restoring extracted peatlands biogeochemically similar to natural peatland pools?","authors":"Émilie Jolin, Julien Arsenault, Julie Talbot, Mahmud Hassan, Line Rochefort","doi":"10.1002/eap.3052","DOIUrl":"https://doi.org/10.1002/eap.3052","url":null,"abstract":"<p><p>In the last 25 years, several degraded peatlands in eastern Canada have been restored toward their natural structure. Pools are common in natural peatlands and are important habitats for unique flora and fauna. Because of their ecological value, pools have been created in some restored peatland sites. Nevertheless, the biogeochemistry of created pools in a restoration context has seldom been studied. The objective of our study is to characterize the biogeochemistry of created pools from restored peatlands and compare them with natural pools along a chronosequence since their creation. We measured different biogeochemical variables (pH, concentrations of nitrogen (N), phosphorus (P), dissolved organic carbon (DOC), dissolved organic matter (DOM), base cations-calcium (Ca), sodium (Na), magnesium (Mg), and potassium (K)-and dissolved gases-methane (CH<sub>4</sub>), carbon dioxide (CO<sub>2</sub>), and nitrous oxide (N<sub>2</sub>O)-) in 61 pools distributed over seven peatlands in eastern Canada. The sites represent a range of conditions, from natural to restored peatlands with pools ranging from 3 to 22 years old. Created and natural pools had distinctive biogeochemistry, with created pools being generally less acidic (pH >5) and 2.5 times more concentrated in nutrients (N and P) than in natural pools. DOC, N, P, dissolved gases, and base cations concentrations were lower in natural pools than in created pools, and varied between created sites. The oldest created pools (age >17 years) tend to approach the biogeochemical characteristics of natural pools, indicating that created pools may, over time, provide habitats with similar conditions to natural pools. A return of created pools to a natural pool-like biogeochemistry could thus inform on the success of peatland restoration.</p>","PeriodicalId":55168,"journal":{"name":"Ecological Applications","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142402063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}