Foundations of Computational Mathematics最新文献

筛选
英文 中文
Optimal Polynomial Meshes Exist on any Multivariate Convex Domain 在任何多元凸域上都存在最优多项式网格
1区 数学
Foundations of Computational Mathematics Pub Date : 2023-01-23 DOI: 10.1007/s10208-023-09606-x
Feng Dai, Andriy Prymak
{"title":"Optimal Polynomial Meshes Exist on any Multivariate Convex Domain","authors":"Feng Dai, Andriy Prymak","doi":"10.1007/s10208-023-09606-x","DOIUrl":"https://doi.org/10.1007/s10208-023-09606-x","url":null,"abstract":"We show that optimal polynomial meshes exist for every convex body in $${mathbb {R}}^d$$ , confirming a conjecture by A. Kroó.","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"248 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136297270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scattering and Uniform in Time Error Estimates for Splitting Method in NLS NLS中分裂法时间误差估计中的散射和均匀性
IF 3 1区 数学
Foundations of Computational Mathematics Pub Date : 2022-11-16 DOI: 10.1007/s10208-022-09600-9
R. Carles, C. Su
{"title":"Scattering and Uniform in Time Error Estimates for Splitting Method in NLS","authors":"R. Carles, C. Su","doi":"10.1007/s10208-022-09600-9","DOIUrl":"https://doi.org/10.1007/s10208-022-09600-9","url":null,"abstract":"","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47665434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Sharp Bounds on the Approximation Rates, Metric Entropy, and n-Widths of Shallow Neural Networks 浅神经网络的近似率、度量熵和n-宽度的锐界
IF 3 1区 数学
Foundations of Computational Mathematics Pub Date : 2022-11-09 DOI: 10.1007/s10208-022-09595-3
Jonathan W. Siegel, Jinchao Xu
{"title":"Sharp Bounds on the Approximation Rates, Metric Entropy, and n-Widths of Shallow Neural Networks","authors":"Jonathan W. Siegel, Jinchao Xu","doi":"10.1007/s10208-022-09595-3","DOIUrl":"https://doi.org/10.1007/s10208-022-09595-3","url":null,"abstract":"","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44959269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Pseudospectral Shattering, the Sign Function, and Diagonalization in Nearly Matrix Multiplication Time 伪谱破碎、符号函数和近矩阵乘法时间的对角化
IF 3 1区 数学
Foundations of Computational Mathematics Pub Date : 2022-08-24 DOI: 10.1007/s10208-022-09577-5
Jess Banks, Jorge Garza-Vargas, Archit Kulkarni, Nikhil Srivastava
{"title":"Pseudospectral Shattering, the Sign Function, and Diagonalization in Nearly Matrix Multiplication Time","authors":"Jess Banks, Jorge Garza-Vargas, Archit Kulkarni, Nikhil Srivastava","doi":"10.1007/s10208-022-09577-5","DOIUrl":"https://doi.org/10.1007/s10208-022-09577-5","url":null,"abstract":"<p>We exhibit a randomized algorithm which, given a square matrix <span>(Ain mathbb {C}^{ntimes n})</span> with <span>(Vert AVert le 1)</span> and <span>(delta &gt;0)</span>, computes with high probability an invertible <i>V</i> and diagonal <i>D</i> such that <span>( Vert A-VDV^{-1}Vert le delta )</span> using <span>(O(T_mathsf {MM}(n)log ^2(n/delta )))</span> arithmetic operations, in finite arithmetic with <span>(O(log ^4(n/delta )log n))</span> bits of precision. The computed similarity <i>V</i> additionally satisfies <span>(Vert VVert Vert V^{-1}Vert le O(n^{2.5}/delta ))</span>. Here <span>(T_mathsf {MM}(n))</span> is the number of arithmetic operations required to multiply two <span>(ntimes n)</span> complex matrices numerically stably, known to satisfy <span>(T_mathsf {MM}(n)=O(n^{omega +eta }))</span> for every <span>(eta &gt;0)</span> where <span>(omega )</span> is the exponent of matrix multiplication (Demmel et al. in Numer Math 108(1):59–91, 2007). The algorithm is a variant of the spectral bisection algorithm in numerical linear algebra (Beavers Jr. and Denman in Numer Math 21(1-2):143–169, 1974) with a crucial Gaussian perturbation preprocessing step. Our result significantly improves the previously best-known provable running times of <span>(O(n^{10}/delta ^2))</span> arithmetic operations for diagonalization of general matrices (Armentano et al. in J Eur Math Soc 20(6):1375–1437, 2018) and (with regard to the dependence on <i>n</i>) <span>(O(n^3))</span> arithmetic operations for Hermitian matrices (Dekker and Traub in Linear Algebra Appl 4:137–154, 1971). It is the first algorithm to achieve nearly matrix multiplication time for diagonalization in any model of computation (real arithmetic, rational arithmetic, or finite arithmetic), thereby matching the complexity of other dense linear algebra operations such as inversion and <i>QR</i> factorization up to polylogarithmic factors. The proof rests on two new ingredients. (1) We show that adding a small complex Gaussian perturbation to <i>any</i> matrix splits its pseudospectrum into <i>n</i> small well-separated components. In particular, this implies that the eigenvalues of the perturbed matrix have a large minimum gap, a property of independent interest in random matrix theory. (2) We give a rigorous analysis of Roberts’ Newton iteration method (Roberts in Int J Control 32(4):677–687, 1980) for computing the sign function of a matrix in finite arithmetic, itself an open problem in numerical analysis since at least 1986.</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"6 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138534306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bad and Good News for Strassen’s Laser Method: Border Rank of $$mathrm{Perm}_3$$ and Strict Submultiplicativity Strassen激光方法的坏消息和好消息:边界秩为$$mathrm{Perm}_3$$与严格子乘法
IF 3 1区 数学
Foundations of Computational Mathematics Pub Date : 2022-08-12 DOI: 10.1007/s10208-022-09579-3
Austin Conner, Hang Huang, J. Landsberg
{"title":"Bad and Good News for Strassen’s Laser Method: Border Rank of $$mathrm{Perm}_3$$ and Strict Submultiplicativity","authors":"Austin Conner, Hang Huang, J. Landsberg","doi":"10.1007/s10208-022-09579-3","DOIUrl":"https://doi.org/10.1007/s10208-022-09579-3","url":null,"abstract":"","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"1 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43274289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Kähler Geometry of Framed Quiver Moduli and Machine Learning Kähler框架颤模几何与机器学习
IF 3 1区 数学
Foundations of Computational Mathematics Pub Date : 2022-08-01 DOI: 10.1007/s10208-022-09587-3
G. Jeffreys, Siu-Cheong Lau
{"title":"Kähler Geometry of Framed Quiver Moduli and Machine Learning","authors":"G. Jeffreys, Siu-Cheong Lau","doi":"10.1007/s10208-022-09587-3","DOIUrl":"https://doi.org/10.1007/s10208-022-09587-3","url":null,"abstract":"","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"23 1","pages":"1899-1957"},"PeriodicalIF":3.0,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48055726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Stirling-Type Formula for the Distribution of the Length of Longest Increasing Subsequences 最长递增子序列长度分布的Stirling型公式
IF 3 1区 数学
Foundations of Computational Mathematics Pub Date : 2022-06-19 DOI: 10.1007/s10208-023-09604-z
F. Bornemann
{"title":"A Stirling-Type Formula for the Distribution of the Length of Longest Increasing Subsequences","authors":"F. Bornemann","doi":"10.1007/s10208-023-09604-z","DOIUrl":"https://doi.org/10.1007/s10208-023-09604-z","url":null,"abstract":"","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"1 1","pages":"1-39"},"PeriodicalIF":3.0,"publicationDate":"2022-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47944057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Spectral Graph Matching and Regularized Quadratic Relaxations I Algorithm and Gaussian Analysis 谱图匹配与正则二次松弛I算法与高斯分析
IF 3 1区 数学
Foundations of Computational Mathematics Pub Date : 2022-06-10 DOI: 10.1007/s10208-022-09570-y
Z. Fan, Cheng Mao, Yihong Wu, Jiaming Xu
{"title":"Spectral Graph Matching and Regularized Quadratic Relaxations I Algorithm and Gaussian Analysis","authors":"Z. Fan, Cheng Mao, Yihong Wu, Jiaming Xu","doi":"10.1007/s10208-022-09570-y","DOIUrl":"https://doi.org/10.1007/s10208-022-09570-y","url":null,"abstract":"","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"23 1","pages":"1511 - 1565"},"PeriodicalIF":3.0,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49612197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Implicitisation and Parameterisation in Polynomial Functors 多项式函数的隐式化和参数化
IF 3 1区 数学
Foundations of Computational Mathematics Pub Date : 2022-06-03 DOI: 10.1007/s10208-023-09619-6
A. Blatter, J. Draisma, Emanuele Ventura
{"title":"Implicitisation and Parameterisation in Polynomial Functors","authors":"A. Blatter, J. Draisma, Emanuele Ventura","doi":"10.1007/s10208-023-09619-6","DOIUrl":"https://doi.org/10.1007/s10208-023-09619-6","url":null,"abstract":"","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2022-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44023418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Optimal Polynomial Meshes Exist on any Multivariate Convex Domain 在任何多元凸域上都存在最优多项式网格
IF 3 1区 数学
Foundations of Computational Mathematics Pub Date : 2022-05-27 DOI: 10.48550/arXiv.2205.14111
Feng Dai, A. Prymak
{"title":"Optimal Polynomial Meshes Exist on any Multivariate Convex Domain","authors":"Feng Dai, A. Prymak","doi":"10.48550/arXiv.2205.14111","DOIUrl":"https://doi.org/10.48550/arXiv.2205.14111","url":null,"abstract":"We show that optimal polynomial meshes exist for every convex body in $${mathbb {R}}^d$$ R d , confirming a conjecture by A. Kroó.","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"1 1","pages":"1-30"},"PeriodicalIF":3.0,"publicationDate":"2022-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47356223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信