Approximation of Deterministic Mean Field Games with Control-Affine Dynamics

IF 2.5 1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS
Justina Gianatti, Francisco J. Silva
{"title":"Approximation of Deterministic Mean Field Games with Control-Affine Dynamics","authors":"Justina Gianatti, Francisco J. Silva","doi":"10.1007/s10208-023-09629-4","DOIUrl":null,"url":null,"abstract":"<p>We consider deterministic mean field games where the dynamics of a typical agent is non-linear with respect to the state variable and affine with respect to the control variable. Particular instances of the problem considered here are mean field games with control on the acceleration (see Achdou et al. in NoDEA Nonlinear Differ Equ Appl 27(3):33, 2020; Cannarsa and Mendico in Minimax Theory Appl 5(2):221-250, 2020; Cardaliaguet and Mendico in Nonlinear Anal 203: 112185, 2021). We focus our attention on the approximation of such mean field games by analogous problems in discrete time and finite state space which fall in the framework of (Gomes in J Math Pures Appl (9) 93(3):308-328, 2010). For these approximations, we show the existence and, under an additional monotonicity assumption, uniqueness of solutions. In our main result, we establish the convergence of equilibria of the discrete mean field games problems towards equilibria of the continuous one. Finally, we provide some numerical results for two MFG problems. In the first one, the dynamics of a typical player is nonlinear with respect to the state and, in the second one, a typical player controls its acceleration.As per journal style, reference citation should be expanded form in abstract. So kindly check and confirm the reference citation present in the abstract is correct.Please change \"Gomes in\" below by \"Gomes et al. in \"</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"30 11","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-023-09629-4","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 3

Abstract

We consider deterministic mean field games where the dynamics of a typical agent is non-linear with respect to the state variable and affine with respect to the control variable. Particular instances of the problem considered here are mean field games with control on the acceleration (see Achdou et al. in NoDEA Nonlinear Differ Equ Appl 27(3):33, 2020; Cannarsa and Mendico in Minimax Theory Appl 5(2):221-250, 2020; Cardaliaguet and Mendico in Nonlinear Anal 203: 112185, 2021). We focus our attention on the approximation of such mean field games by analogous problems in discrete time and finite state space which fall in the framework of (Gomes in J Math Pures Appl (9) 93(3):308-328, 2010). For these approximations, we show the existence and, under an additional monotonicity assumption, uniqueness of solutions. In our main result, we establish the convergence of equilibria of the discrete mean field games problems towards equilibria of the continuous one. Finally, we provide some numerical results for two MFG problems. In the first one, the dynamics of a typical player is nonlinear with respect to the state and, in the second one, a typical player controls its acceleration.As per journal style, reference citation should be expanded form in abstract. So kindly check and confirm the reference citation present in the abstract is correct.Please change "Gomes in" below by "Gomes et al. in "

具有控制仿射动力学的确定性平均场对策的逼近
我们考虑确定性平均场对策,其中典型代理的动力学相对于状态变量是非线性的,并且相对于控制变量是仿射的。这里考虑的问题的具体例子是具有加速度控制的平均场对策(参见Achdou等人在NoDEA非线性微分方程应用27(3):332020;Cannarsa和Mendico在极小极大理论中的应用5(2):221-250200;Cardaliaguet和Mendico在非线性分析203:1121852021)。我们将注意力集中在离散时间和有限状态空间中的类似问题对这种平均场对策的近似上,这些问题属于(Gomes in J Math Pures Appl(9)93(3):308-3282010)的框架。对于这些近似,我们证明了解的存在性,并且在一个额外的单调性假设下,证明了解是唯一的。在我们的主要结果中,我们建立了离散平均场对策问题的均衡向连续均衡的收敛性。最后,我们给出了两个MFG问题的一些数值结果。在第一种情况下,典型玩家的动力学相对于状态是非线性的,而在第二种情况中,典型玩家控制其加速度。根据期刊风格,参考文献引文应以摘要形式展开。因此,请检查并确认摘要中的参考引文是正确的。请将下面的“Gomes in”改为“Gomes et al.in”
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Foundations of Computational Mathematics
Foundations of Computational Mathematics 数学-计算机:理论方法
CiteScore
6.90
自引率
3.30%
发文量
46
审稿时长
>12 weeks
期刊介绍: Foundations of Computational Mathematics (FoCM) will publish research and survey papers of the highest quality which further the understanding of the connections between mathematics and computation. The journal aims to promote the exploration of all fundamental issues underlying the creative tension among mathematics, computer science and application areas unencumbered by any external criteria such as the pressure for applications. The journal will thus serve an increasingly important and applicable area of mathematics. The journal hopes to further the understanding of the deep relationships between mathematical theory: analysis, topology, geometry and algebra, and the computational processes as they are evolving in tandem with the modern computer. With its distinguished editorial board selecting papers of the highest quality and interest from the international community, FoCM hopes to influence both mathematics and computation. Relevance to applications will not constitute a requirement for the publication of articles. The journal does not accept code for review however authors who have code/data related to the submission should include a weblink to the repository where the data/code is stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信