{"title":"将对称矩阵分解为正半有限矩阵和对角矩阵之和的计算复杂性","authors":"Levent Tunçel, Stephen A. Vavasis, Jingye Xu","doi":"10.1007/s10208-023-09637-4","DOIUrl":null,"url":null,"abstract":"<p>We study several variants of decomposing a symmetric matrix into a sum of a low-rank positive-semidefinite matrix and a diagonal matrix. Such decompositions have applications in factor analysis, and they have been studied for many decades. On the one hand, we prove that when the rank of the positive-semidefinite matrix in the decomposition is bounded above by an absolute constant, the problem can be solved in polynomial time. On the other hand, we prove that, in general, these problems as well as their certain approximation versions are all NP-hard. Finally, we prove that many of these low-rank decomposition problems are complete in the first-order theory of the reals, i.e., given any system of polynomial equations, we can write down a low-rank decomposition problem in polynomial time so that the original system has a solution iff our corresponding decomposition problem has a feasible solution of certain (lowest) rank.\n</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"17 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational Complexity of Decomposing a Symmetric Matrix as a Sum of Positive Semidefinite and Diagonal Matrices\",\"authors\":\"Levent Tunçel, Stephen A. Vavasis, Jingye Xu\",\"doi\":\"10.1007/s10208-023-09637-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study several variants of decomposing a symmetric matrix into a sum of a low-rank positive-semidefinite matrix and a diagonal matrix. Such decompositions have applications in factor analysis, and they have been studied for many decades. On the one hand, we prove that when the rank of the positive-semidefinite matrix in the decomposition is bounded above by an absolute constant, the problem can be solved in polynomial time. On the other hand, we prove that, in general, these problems as well as their certain approximation versions are all NP-hard. Finally, we prove that many of these low-rank decomposition problems are complete in the first-order theory of the reals, i.e., given any system of polynomial equations, we can write down a low-rank decomposition problem in polynomial time so that the original system has a solution iff our corresponding decomposition problem has a feasible solution of certain (lowest) rank.\\n</p>\",\"PeriodicalId\":55151,\"journal\":{\"name\":\"Foundations of Computational Mathematics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10208-023-09637-4\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-023-09637-4","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Computational Complexity of Decomposing a Symmetric Matrix as a Sum of Positive Semidefinite and Diagonal Matrices
We study several variants of decomposing a symmetric matrix into a sum of a low-rank positive-semidefinite matrix and a diagonal matrix. Such decompositions have applications in factor analysis, and they have been studied for many decades. On the one hand, we prove that when the rank of the positive-semidefinite matrix in the decomposition is bounded above by an absolute constant, the problem can be solved in polynomial time. On the other hand, we prove that, in general, these problems as well as their certain approximation versions are all NP-hard. Finally, we prove that many of these low-rank decomposition problems are complete in the first-order theory of the reals, i.e., given any system of polynomial equations, we can write down a low-rank decomposition problem in polynomial time so that the original system has a solution iff our corresponding decomposition problem has a feasible solution of certain (lowest) rank.
期刊介绍:
Foundations of Computational Mathematics (FoCM) will publish research and survey papers of the highest quality which further the understanding of the connections between mathematics and computation. The journal aims to promote the exploration of all fundamental issues underlying the creative tension among mathematics, computer science and application areas unencumbered by any external criteria such as the pressure for applications. The journal will thus serve an increasingly important and applicable area of mathematics. The journal hopes to further the understanding of the deep relationships between mathematical theory: analysis, topology, geometry and algebra, and the computational processes as they are evolving in tandem with the modern computer.
With its distinguished editorial board selecting papers of the highest quality and interest from the international community, FoCM hopes to influence both mathematics and computation. Relevance to applications will not constitute a requirement for the publication of articles.
The journal does not accept code for review however authors who have code/data related to the submission should include a weblink to the repository where the data/code is stored.