Computational Complexity of Decomposing a Symmetric Matrix as a Sum of Positive Semidefinite and Diagonal Matrices

IF 2.5 1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS
Levent Tunçel, Stephen A. Vavasis, Jingye Xu
{"title":"Computational Complexity of Decomposing a Symmetric Matrix as a Sum of Positive Semidefinite and Diagonal Matrices","authors":"Levent Tunçel, Stephen A. Vavasis, Jingye Xu","doi":"10.1007/s10208-023-09637-4","DOIUrl":null,"url":null,"abstract":"<p>We study several variants of decomposing a symmetric matrix into a sum of a low-rank positive-semidefinite matrix and a diagonal matrix. Such decompositions have applications in factor analysis, and they have been studied for many decades. On the one hand, we prove that when the rank of the positive-semidefinite matrix in the decomposition is bounded above by an absolute constant, the problem can be solved in polynomial time. On the other hand, we prove that, in general, these problems as well as their certain approximation versions are all NP-hard. Finally, we prove that many of these low-rank decomposition problems are complete in the first-order theory of the reals, i.e., given any system of polynomial equations, we can write down a low-rank decomposition problem in polynomial time so that the original system has a solution iff our corresponding decomposition problem has a feasible solution of certain (lowest) rank.\n</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"17 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-023-09637-4","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We study several variants of decomposing a symmetric matrix into a sum of a low-rank positive-semidefinite matrix and a diagonal matrix. Such decompositions have applications in factor analysis, and they have been studied for many decades. On the one hand, we prove that when the rank of the positive-semidefinite matrix in the decomposition is bounded above by an absolute constant, the problem can be solved in polynomial time. On the other hand, we prove that, in general, these problems as well as their certain approximation versions are all NP-hard. Finally, we prove that many of these low-rank decomposition problems are complete in the first-order theory of the reals, i.e., given any system of polynomial equations, we can write down a low-rank decomposition problem in polynomial time so that the original system has a solution iff our corresponding decomposition problem has a feasible solution of certain (lowest) rank.

Abstract Image

将对称矩阵分解为正半有限矩阵和对角矩阵之和的计算复杂性
我们研究了将对称矩阵分解为低阶正半无限矩阵和对角矩阵之和的几种变体。这种分解在因子分析中有着广泛的应用,并且已经被研究了几十年。一方面,我们证明了当分解中正半无限矩阵的秩以绝对常数为界时,问题可以在多项式时间内求解。另一方面,我们证明,一般来说,这些问题以及它们的某些近似版本都是 NP 难问题。最后,我们证明了这些低阶分解问题中的许多问题在有数一阶理论中是完备的,也就是说,给定任何多项式方程组,我们都可以在多项式时间内写出一个低阶分解问题,如果我们相应的分解问题有某个(最低)阶的可行解,那么原方程组就有解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Foundations of Computational Mathematics
Foundations of Computational Mathematics 数学-计算机:理论方法
CiteScore
6.90
自引率
3.30%
发文量
46
审稿时长
>12 weeks
期刊介绍: Foundations of Computational Mathematics (FoCM) will publish research and survey papers of the highest quality which further the understanding of the connections between mathematics and computation. The journal aims to promote the exploration of all fundamental issues underlying the creative tension among mathematics, computer science and application areas unencumbered by any external criteria such as the pressure for applications. The journal will thus serve an increasingly important and applicable area of mathematics. The journal hopes to further the understanding of the deep relationships between mathematical theory: analysis, topology, geometry and algebra, and the computational processes as they are evolving in tandem with the modern computer. With its distinguished editorial board selecting papers of the highest quality and interest from the international community, FoCM hopes to influence both mathematics and computation. Relevance to applications will not constitute a requirement for the publication of articles. The journal does not accept code for review however authors who have code/data related to the submission should include a weblink to the repository where the data/code is stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信