{"title":"Extremal Points and Sparse Optimization for Generalized Kantorovich–Rubinstein Norms","authors":"Marcello Carioni, José A. Iglesias, Daniel Walter","doi":"10.1007/s10208-023-09634-7","DOIUrl":null,"url":null,"abstract":"<p>A precise characterization of the extremal points of sublevel sets of nonsmooth penalties provides both detailed information about minimizers, and optimality conditions in general classes of minimization problems involving them. Moreover, it enables the application of fully corrective generalized conditional gradient methods for their efficient solution. In this manuscript, this program is adapted to the minimization of a smooth convex fidelity term which is augmented with an unbalanced transport regularization term given in the form of a generalized Kantorovich–Rubinstein norm for Radon measures. More precisely, we show that the extremal points associated to the latter are given by all Dirac delta functionals supported in the spatial domain as well as certain dipoles, i.e., pairs of Diracs with the same mass but with different signs. Subsequently, this characterization is used to derive precise first-order optimality conditions as well as an efficient solution algorithm for which linear convergence is proved under natural assumptions. This behavior is also reflected in numerical examples for a model problem.</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"1 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-023-09634-7","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
A precise characterization of the extremal points of sublevel sets of nonsmooth penalties provides both detailed information about minimizers, and optimality conditions in general classes of minimization problems involving them. Moreover, it enables the application of fully corrective generalized conditional gradient methods for their efficient solution. In this manuscript, this program is adapted to the minimization of a smooth convex fidelity term which is augmented with an unbalanced transport regularization term given in the form of a generalized Kantorovich–Rubinstein norm for Radon measures. More precisely, we show that the extremal points associated to the latter are given by all Dirac delta functionals supported in the spatial domain as well as certain dipoles, i.e., pairs of Diracs with the same mass but with different signs. Subsequently, this characterization is used to derive precise first-order optimality conditions as well as an efficient solution algorithm for which linear convergence is proved under natural assumptions. This behavior is also reflected in numerical examples for a model problem.
期刊介绍:
Foundations of Computational Mathematics (FoCM) will publish research and survey papers of the highest quality which further the understanding of the connections between mathematics and computation. The journal aims to promote the exploration of all fundamental issues underlying the creative tension among mathematics, computer science and application areas unencumbered by any external criteria such as the pressure for applications. The journal will thus serve an increasingly important and applicable area of mathematics. The journal hopes to further the understanding of the deep relationships between mathematical theory: analysis, topology, geometry and algebra, and the computational processes as they are evolving in tandem with the modern computer.
With its distinguished editorial board selecting papers of the highest quality and interest from the international community, FoCM hopes to influence both mathematics and computation. Relevance to applications will not constitute a requirement for the publication of articles.
The journal does not accept code for review however authors who have code/data related to the submission should include a weblink to the repository where the data/code is stored.