Spyros Konitopoulos, Danai Roumelioti, George Zoupanos
{"title":"Unification of Gravity and Internal Interactions","authors":"Spyros Konitopoulos, Danai Roumelioti, George Zoupanos","doi":"10.1002/prop.202300226","DOIUrl":"10.1002/prop.202300226","url":null,"abstract":"<p>In the gauge theoretic approach of gravity, general relativity is described by gauging the symmetry of the tangent manifold in four dimensions. Usually the dimension of the tangent space is considered to be equal to the dimension of the curved manifold. However, the tangent group of a manifold of dimension <i>d</i> is not necessarily <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>S</mi>\u0000 <msub>\u0000 <mi>O</mi>\u0000 <mi>d</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$SO_d$</annotation>\u0000 </semantics></math>. It has been suggested earlier that by gauging an enlarged symmetry of the tangent space in four dimensions one could unify gravity with internal interactions. Here, such a unified model is considered by gauging the <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>S</mi>\u0000 <msub>\u0000 <mi>O</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mn>1</mn>\u0000 <mo>,</mo>\u0000 <mn>17</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$SO_{(1,17)}$</annotation>\u0000 </semantics></math> as the extended Lorentz group overcoming in this way some difficulties of the previous attempts of similar unification and eventually obtained the <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>S</mi>\u0000 <msub>\u0000 <mi>O</mi>\u0000 <mn>10</mn>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$SO_{10}$</annotation>\u0000 </semantics></math> GUT, supplemented by an <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>S</mi>\u0000 <msub>\u0000 <mi>U</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <mo>×</mo>\u0000 <mi>S</mi>\u0000 <msub>\u0000 <mi>U</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$SU_2 times SU_2$</annotation>\u0000 </semantics></math> global symmetry.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"72 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/prop.202300226","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135093004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Lesson from \u0000 \u0000 \u0000 R\u0000 \u0000 τ\u0000 τ\u0000 \u0000 \u0000 K\u0000 \u0000 (\u0000 *\u0000 )\u0000 \u0000 \u0000 \u0000 $R_{tau tau }^{K^{(ast )}}$\u0000 and \u0000 \u0000 \u0000 R\u0000 \u0000 ν\u0000 ν\u0000 \u0000 \u0000 K\u0000 \u0000 (\u0000 *\u0000 )\u0000 \u0000 \u0000 \u0000 $R_{nu nu }^{K^{(ast )}}$\u0000 at Belle II","authors":"Arturo de Giorgi, Gioacchino Piazza","doi":"10.1002/prop.202300200","DOIUrl":"10.1002/prop.202300200","url":null,"abstract":"<p>Within the assumption of Left-Handed (LH) New Physics (NP), the relations between <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>B</mi>\u0000 <mo>(</mo>\u0000 <mi>B</mi>\u0000 <mo>→</mo>\u0000 <msup>\u0000 <mi>K</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mo>*</mo>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </msup>\u0000 <msup>\u0000 <mi>τ</mi>\u0000 <mo>+</mo>\u0000 </msup>\u0000 <msup>\u0000 <mi>τ</mi>\u0000 <mo>−</mo>\u0000 </msup>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$mathcal {B}(Brightarrow K^{(ast )} tau ^+tau ^-)$</annotation>\u0000 </semantics></math> and <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>B</mi>\u0000 <mo>(</mo>\u0000 <mi>B</mi>\u0000 <mo>→</mo>\u0000 <msup>\u0000 <mi>K</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mo>*</mo>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </msup>\u0000 <mi>ν</mi>\u0000 <mover>\u0000 <mi>ν</mi>\u0000 <mo>¯</mo>\u0000 </mover>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$mathcal {B}(Brightarrow K^{(ast )} nu bar{nu })$</annotation>\u0000 </semantics></math> for several Beyond the Standard Model (BSM) scenarios are reviewed, commonly considered to explain the Lepton flavor Universality (LFU) violation observed in charged and neutral-current semileptonic <i>B</i> decays. The latest <math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>R</mi>\u0000 <msup>\u0000 <mi>D</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mo>*</mo>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </msup>\u0000 </msub>\u0000 <annotation>$R_{D^{(ast )}}$</annotation>\u0000 </semantics></math> world averages that include the recent LHCb measurement and assess the possibility of simultaneously explaining <i>B</i>-anomalies without spoiling current bounds on di-neutrino and di-tau modes are employed. This is particularly relevant in light of the upcoming results by Belle II on neutrinos and the continuing improvement in accuracy and sensitivity achieved in tau modes.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"72 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/prop.202300200","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135475364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}