八重子神奇超引力、尼迈尔晶格和非凡与希尔伯特模数形式

IF 5.6 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Murat Günaydin, Abhiram Kidambi
{"title":"八重子神奇超引力、尼迈尔晶格和非凡与希尔伯特模数形式","authors":"Murat Günaydin,&nbsp;Abhiram Kidambi","doi":"10.1002/prop.202300242","DOIUrl":null,"url":null,"abstract":"<p>The quantum degeneracies of Bogomolny-Prasad-Sommerfield (BPS) black holes of octonionic magical supergravity in five dimensions are studied. Quantum degeneracy is defined purely number theoretically as the number of distinct states in charge space with a given set of invariant labels. Quantum degeneracies of spherically symmetric stationary BPS black holes are given by the Fourier coefficients of modular forms of exceptional group <math>\n <semantics>\n <msub>\n <mi>E</mi>\n <mrow>\n <mn>7</mn>\n <mo>(</mo>\n <mo>−</mo>\n <mn>25</mn>\n <mo>)</mo>\n </mrow>\n </msub>\n <annotation>$E_{7(-25)}$</annotation>\n </semantics></math>. Their charges take values in the lattice defined by the exceptional Jordan algebra over integral octonions. The quantum degeneracies of rank 1 and rank 2 BPS black holes are given by the Fourier coefficients of singular modular forms <math>\n <semantics>\n <mrow>\n <msub>\n <mi>E</mi>\n <mn>4</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>Z</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$E_4(Z)$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <msub>\n <mi>E</mi>\n <mn>8</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>Z</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$E_8(Z)$</annotation>\n </semantics></math>. The rank 3 (large) BPS black holes will be studied elsewhere. Following the work of N. Elkies and B. Gross on embeddings of cubic rings <i>A</i> into the exceptional Jordan algebra we show that the quantum degeneracies of rank 1 black holes described by such embeddings are given by the Fourier coefficients of the Hilbert modular forms (HMFs) of <math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mi>L</mi>\n <mo>(</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mi>A</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$SL(2,A)$</annotation>\n </semantics></math>. If the discriminant of the cubic ring <i>A</i> is <math>\n <semantics>\n <mrow>\n <mi>D</mi>\n <mo>=</mo>\n <msup>\n <mi>p</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$D=p^2$</annotation>\n </semantics></math> with <i>p</i> a prime number then the isotropic lines in the 24 dimensional orthogonal complement of <i>A</i> define a pair of Niemeier lattices which can be taken as charge lattices of some BPS black holes. The current status of the searches for the M/superstring theoretic origins of the octonionic magical supergravity is also reviewed.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"72 2","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/prop.202300242","citationCount":"0","resultStr":"{\"title\":\"Octonionic Magical Supergravity, Niemeier Lattices, and Exceptional & Hilbert Modular Forms\",\"authors\":\"Murat Günaydin,&nbsp;Abhiram Kidambi\",\"doi\":\"10.1002/prop.202300242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The quantum degeneracies of Bogomolny-Prasad-Sommerfield (BPS) black holes of octonionic magical supergravity in five dimensions are studied. Quantum degeneracy is defined purely number theoretically as the number of distinct states in charge space with a given set of invariant labels. Quantum degeneracies of spherically symmetric stationary BPS black holes are given by the Fourier coefficients of modular forms of exceptional group <math>\\n <semantics>\\n <msub>\\n <mi>E</mi>\\n <mrow>\\n <mn>7</mn>\\n <mo>(</mo>\\n <mo>−</mo>\\n <mn>25</mn>\\n <mo>)</mo>\\n </mrow>\\n </msub>\\n <annotation>$E_{7(-25)}$</annotation>\\n </semantics></math>. Their charges take values in the lattice defined by the exceptional Jordan algebra over integral octonions. The quantum degeneracies of rank 1 and rank 2 BPS black holes are given by the Fourier coefficients of singular modular forms <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>E</mi>\\n <mn>4</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>Z</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$E_4(Z)$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>E</mi>\\n <mn>8</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>Z</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$E_8(Z)$</annotation>\\n </semantics></math>. The rank 3 (large) BPS black holes will be studied elsewhere. Following the work of N. Elkies and B. Gross on embeddings of cubic rings <i>A</i> into the exceptional Jordan algebra we show that the quantum degeneracies of rank 1 black holes described by such embeddings are given by the Fourier coefficients of the Hilbert modular forms (HMFs) of <math>\\n <semantics>\\n <mrow>\\n <mi>S</mi>\\n <mi>L</mi>\\n <mo>(</mo>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mi>A</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$SL(2,A)$</annotation>\\n </semantics></math>. If the discriminant of the cubic ring <i>A</i> is <math>\\n <semantics>\\n <mrow>\\n <mi>D</mi>\\n <mo>=</mo>\\n <msup>\\n <mi>p</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$D=p^2$</annotation>\\n </semantics></math> with <i>p</i> a prime number then the isotropic lines in the 24 dimensional orthogonal complement of <i>A</i> define a pair of Niemeier lattices which can be taken as charge lattices of some BPS black holes. The current status of the searches for the M/superstring theoretic origins of the octonionic magical supergravity is also reviewed.</p>\",\"PeriodicalId\":55150,\"journal\":{\"name\":\"Fortschritte Der Physik-Progress of Physics\",\"volume\":\"72 2\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/prop.202300242\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fortschritte Der Physik-Progress of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/prop.202300242\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fortschritte Der Physik-Progress of Physics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/prop.202300242","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了五维空间八离子神奇超引力博戈莫尔尼-普拉萨德-索默菲尔德(Bogomolny-Prasad-Sommerfield,BPS)黑洞的量子退化性。量子退化被纯粹地定义为电荷空间中具有给定不变标签集的不同状态的数量。球对称静止 BPS 黑洞的量子退行性由例外群 E7(-25)$E_{7(-25)}$ 的模块形式的傅里叶系数给出。它们的电荷取值于积分八元上的非凡约旦代数定义的晶格。秩 1 和秩 2 BPS 黑洞的量子退行性由奇异模块形式 E4(Z)$E_4(Z)$ 和 E8(Z)$E_8(Z)$ 的傅里叶系数给出。秩 3(大)BPS 黑洞将在其他地方研究。根据艾尔基斯(N. Elkies)和格罗斯(B. Gross)关于立方环 A 嵌入例外乔丹代数的研究,我们证明这种嵌入所描述的 1 级黑洞的量子退化性是由 SL(2,A)$SL(2,A)$ 的希尔伯特模块形式(HMFs)的傅里叶系数给出的。如果立方环 A 的判别式为 D=p2$D=p^2$,p 为素数,那么 A 的 24 维正交补集中的各向同性线定义了一对尼梅尔晶格,可以将其视为某些 BPS 黑洞的电荷晶格。本文还综述了对八离子魔幻超引力的 M/超弦理论起源的研究现状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Octonionic Magical Supergravity, Niemeier Lattices, and Exceptional & Hilbert Modular Forms

Octonionic Magical Supergravity, Niemeier Lattices, and Exceptional & Hilbert Modular Forms

The quantum degeneracies of Bogomolny-Prasad-Sommerfield (BPS) black holes of octonionic magical supergravity in five dimensions are studied. Quantum degeneracy is defined purely number theoretically as the number of distinct states in charge space with a given set of invariant labels. Quantum degeneracies of spherically symmetric stationary BPS black holes are given by the Fourier coefficients of modular forms of exceptional group E 7 ( 25 ) $E_{7(-25)}$ . Their charges take values in the lattice defined by the exceptional Jordan algebra over integral octonions. The quantum degeneracies of rank 1 and rank 2 BPS black holes are given by the Fourier coefficients of singular modular forms E 4 ( Z ) $E_4(Z)$ and E 8 ( Z ) $E_8(Z)$ . The rank 3 (large) BPS black holes will be studied elsewhere. Following the work of N. Elkies and B. Gross on embeddings of cubic rings A into the exceptional Jordan algebra we show that the quantum degeneracies of rank 1 black holes described by such embeddings are given by the Fourier coefficients of the Hilbert modular forms (HMFs) of S L ( 2 , A ) $SL(2,A)$ . If the discriminant of the cubic ring A is D = p 2 $D=p^2$ with p a prime number then the isotropic lines in the 24 dimensional orthogonal complement of A define a pair of Niemeier lattices which can be taken as charge lattices of some BPS black holes. The current status of the searches for the M/superstring theoretic origins of the octonionic magical supergravity is also reviewed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
7.70%
发文量
75
审稿时长
6-12 weeks
期刊介绍: The journal Fortschritte der Physik - Progress of Physics is a pure online Journal (since 2013). Fortschritte der Physik - Progress of Physics is devoted to the theoretical and experimental studies of fundamental constituents of matter and their interactions e. g. elementary particle physics, classical and quantum field theory, the theory of gravitation and cosmology, quantum information, thermodynamics and statistics, laser physics and nonlinear dynamics, including chaos and quantum chaos. Generally the papers are review articles with a detailed survey on relevant publications, but original papers of general interest are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信