{"title":"Issue Information: Fortschritte der Physik 6 / 2025","authors":"","doi":"10.1002/prop.70011","DOIUrl":"https://doi.org/10.1002/prop.70011","url":null,"abstract":"","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"73 6","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/prop.70011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144256261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quintessence: An Analytical Study, With Theoretical and Observational Applications","authors":"David Andriot","doi":"10.1002/prop.70007","DOIUrl":"https://doi.org/10.1002/prop.70007","url":null,"abstract":"<p>The authors focus on minimally coupled (multi)field quintessence models, of thawing type, and their realistic solutions. In a model-independent manner, these cosmological solutions are described analytically throughout the universe history. Starting with a kination–radiation domination phase, an upper bound on the scalar potential is obtained to guarantee an early kination: <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>V</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>φ</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>≪</mo>\u0000 <msup>\u0000 <mi>e</mi>\u0000 <mrow>\u0000 <mo>−</mo>\u0000 <msqrt>\u0000 <mn>6</mn>\u0000 </msqrt>\u0000 <mi>φ</mi>\u0000 </mrow>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$V(varphi) ll e^{-sqrt {6} varphi }$</annotation>\u0000 </semantics></math>. Turning to the radiation–matter phase, analytic expressions are obtained for the scale factor <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>a</mi>\u0000 <mo>(</mo>\u0000 <mi>t</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$a(t)$</annotation>\u0000 </semantics></math> (not <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 <mo>(</mo>\u0000 <mi>a</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$t(a)$</annotation>\u0000 </semantics></math>) and the scalar fields <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>φ</mi>\u0000 <mi>i</mi>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>t</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$varphi ^i(t)$</annotation>\u0000 </semantics></math> (usually neglected). These allow us to evaluate analytically the freezing of scalar fields, typically <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Δ</mi>\u0000 <mi>φ</mi>\u0000 <mo>≲</mo>\u0000 <msup>\u0000 <mn>10</mn>\u0000 <mrow>\u0000 <mo>−</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$Delta varphi lesssim 10^{-2}$</annotation>\u0000 </semantics></math>, as well as the transition moment of the dark energy equation of state parameter <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>w</mi>\u0000 ","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"73 6","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144256587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Large \u0000 \u0000 N\u0000 $N$\u0000 Limits of Supersymmetric Quantum Field Theories: A Pedagogical Overview","authors":"Leonardo Santilli","doi":"10.1002/prop.70006","DOIUrl":"https://doi.org/10.1002/prop.70006","url":null,"abstract":"<p>The different large <span></span><math>\u0000 <semantics>\u0000 <mi>N</mi>\u0000 <annotation>$N$</annotation>\u0000 </semantics></math> limits of supersymmetric quantum field theories in three, four, and five dimensions are reviewed. The author distinguishes between the planar limit of SQCD theories, the M-theory limit suited in three and five dimensions, and the long quiver limit. The method to solve exactly the sphere partition functions in each type of limit is spelled out in a pedagogical way. After a comprehensive general treatment of the saddle point approximation in the large <span></span><math>\u0000 <semantics>\u0000 <mi>N</mi>\u0000 <annotation>$N$</annotation>\u0000 </semantics></math> limit, the author also presents an extensive list of examples and detail the calculations. The scope of this overview is to provide an entry-level, computation-oriented understanding of the techniques featured in the field theory side of the AdS/CFT correspondence.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"73 6","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144255961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}