{"title":"Issue Information: Fortschritte der Physik 5 / 2025","authors":"","doi":"10.1002/prop.70009","DOIUrl":"https://doi.org/10.1002/prop.70009","url":null,"abstract":"","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"73 5","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/prop.70009","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143925720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Issue Information: Fortschritte der Physik 4 / 2025","authors":"","doi":"10.1002/prop.70002","DOIUrl":"https://doi.org/10.1002/prop.70002","url":null,"abstract":"","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"73 4","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/prop.70002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantum Fluctuation on the Worldsheet of Probe String in BTZ Black Hole","authors":"Yu-Ting Zhou, Xiao-Mei Kuang","doi":"10.1002/prop.70001","DOIUrl":"https://doi.org/10.1002/prop.70001","url":null,"abstract":"<p>In this paper, the authors investigate the second-order normal quantum fluctuation on the worldsheet of a probe string in the Bañados–Teitelboim–Zanelli (BTZ) black hole. These fluctuations is treated as the projection of Hawking radiation on the worldsheet and indeed modify the action growth of the string. Then in the string field theory/boundary conformal field theory framework, via the boundary vertex operator, the authors study the correlation function of the Schrödinger functional of excited fields on the worldsheet and further extract the field's formula. This study could shed light on the potential connection between complexity growth and correlation function.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"73 5","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143925729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Manuel de León, Jordi Gaset Rifà, Miguel C. Muñoz-Lecanda, Xavier Rivas, Narciso Román-Roy
{"title":"Practical Introduction to Action-Dependent Field Theories","authors":"Manuel de León, Jordi Gaset Rifà, Miguel C. Muñoz-Lecanda, Xavier Rivas, Narciso Román-Roy","doi":"10.1002/prop.70000","DOIUrl":"https://doi.org/10.1002/prop.70000","url":null,"abstract":"<p>Action-dependent field theories are systems where the Lagrangian or Hamiltonian depends on new variables that encode the action. They model a larger class of field theories, including non-conservative behavior, while maintaining a well-defined notion of symmetries and a Noether theorem. This makes them especially suited for open systems. After a conceptual introduction, a quick presentation of a new mathematical framework is made for action-dependent field theory: <i>multicontact geometry</i>. The formalism is illustrated with a variety of action-dependent Lagrangians, some of which are regular and others singular, derived from well-known theories whose Lagrangians have been modified to incorporate action-dependent terms. Detailed computations are provided, including the constraint algorithm for the singular cases, in both the Lagrangian and Hamiltonian formalisms. These are the one-dimensional wave equation, the Klein–Gordon equation and the telegrapher equation, Maxwell's electromagnetism, Metric-affine gravity, the heat equation and Burgers' equation, the Bosonic string theory, and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mn>2</mn>\u0000 <mo>+</mo>\u0000 <mn>1</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(2+1)$</annotation>\u0000 </semantics></math>-dimensional gravity and Chern–Simons equation.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"73 5","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143926190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Issue Information: Fortschritte der Physik 3 / 2025","authors":"","doi":"10.1002/prop.202502001","DOIUrl":"https://doi.org/10.1002/prop.202502001","url":null,"abstract":"","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"73 3","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/prop.202502001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143581423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gaurav N. Gadbail, Simran Arora, Phongpichit Channuie, P. K. Sahoo
{"title":"Cosmological Dynamics of Interacting Dark Energy and Dark Matter in \u0000 \u0000 \u0000 f\u0000 (\u0000 Q\u0000 )\u0000 \u0000 $f(Q)$\u0000 Gravity","authors":"Gaurav N. Gadbail, Simran Arora, Phongpichit Channuie, P. K. Sahoo","doi":"10.1002/prop.202400205","DOIUrl":"https://doi.org/10.1002/prop.202400205","url":null,"abstract":"<p>In this work, the behavior of interacting dark energy (DE) and dark matter (DM) within a model of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>f</mi>\u0000 <mo>(</mo>\u0000 <mi>Q</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$f(Q)$</annotation>\u0000 </semantics></math> gravity is explored, employing the standard framework of dynamical system analysis. The power-law <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>f</mi>\u0000 <mo>(</mo>\u0000 <mi>Q</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$f(Q)$</annotation>\u0000 </semantics></math> model is considered, incorporating two different forms of interacting DE and DM: <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>3</mn>\u0000 <mi>α</mi>\u0000 <mi>H</mi>\u0000 <msub>\u0000 <mi>ρ</mi>\u0000 <mi>m</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$3alpha Hrho _m$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mfrac>\u0000 <mi>α</mi>\u0000 <mrow>\u0000 <mn>3</mn>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 </mfrac>\u0000 <msub>\u0000 <mi>ρ</mi>\u0000 <mi>m</mi>\u0000 </msub>\u0000 <msub>\u0000 <mi>ρ</mi>\u0000 <mtext>DE</mtext>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$frac{alpha }{3H}rho _m rho _{text{DE}}$</annotation>\u0000 </semantics></math>. The evolution of <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>Ω</mi>\u0000 <mi>m</mi>\u0000 </msub>\u0000 <annotation>$Omega _m$</annotation>\u0000 </semantics></math>, <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>Ω</mi>\u0000 <mi>r</mi>\u0000 </msub>\u0000 <annotation>$Omega _r$</annotation>\u0000 </semantics></math>, <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>Ω</mi>\u0000 <mtext>DE</mtext>\u0000 </msub>\u0000 <annotation>$Omega _{text{DE}}$</annotation>\u0000 </semantics></math>, <span></span><math>\u0000 <semantics>\u0000 <mi>q</mi>\u0000 <annotation>$q$</annotation>\u0000 </semantics></math>, and <span></span><","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"73 5","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/prop.202400205","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143925916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}