Quintessence: An Analytical Study, With Theoretical and Observational Applications

IF 5.6 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
David Andriot
{"title":"Quintessence: An Analytical Study, With Theoretical and Observational Applications","authors":"David Andriot","doi":"10.1002/prop.70007","DOIUrl":null,"url":null,"abstract":"<p>The authors focus on minimally coupled (multi)field quintessence models, of thawing type, and their realistic solutions. In a model-independent manner, these cosmological solutions are described analytically throughout the universe history. Starting with a kination–radiation domination phase, an upper bound on the scalar potential is obtained to guarantee an early kination: <span></span><math>\n <semantics>\n <mrow>\n <mi>V</mi>\n <mrow>\n <mo>(</mo>\n <mi>φ</mi>\n <mo>)</mo>\n </mrow>\n <mo>≪</mo>\n <msup>\n <mi>e</mi>\n <mrow>\n <mo>−</mo>\n <msqrt>\n <mn>6</mn>\n </msqrt>\n <mi>φ</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$V(\\varphi) \\ll e^{-\\sqrt {6} \\varphi }$</annotation>\n </semantics></math>. Turning to the radiation–matter phase, analytic expressions are obtained for the scale factor <span></span><math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$a(t)$</annotation>\n </semantics></math> (not <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>(</mo>\n <mi>a</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$t(a)$</annotation>\n </semantics></math>) and the scalar fields <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>φ</mi>\n <mi>i</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\varphi ^i(t)$</annotation>\n </semantics></math> (usually neglected). These allow us to evaluate analytically the freezing of scalar fields, typically <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mi>φ</mi>\n <mo>≲</mo>\n <msup>\n <mn>10</mn>\n <mrow>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$\\Delta \\varphi \\lesssim 10^{-2}$</annotation>\n </semantics></math>, as well as the transition moment of the dark energy equation of state parameter <span></span><math>\n <semantics>\n <msub>\n <mi>w</mi>\n <mi>φ</mi>\n </msub>\n <annotation>$w_{\\varphi }$</annotation>\n </semantics></math> from <span></span><math>\n <semantics>\n <mrow>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$+1$</annotation>\n </semantics></math> to <span></span><math>\n <semantics>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$-1$</annotation>\n </semantics></math>, with excellent agreement to the numerics. Comments are made on this freezing in view of string theory model building, and of some cosmological events. Turning to the latest phase of matter–dark energy domination, it is shown that the (multi)field displacement is sub-Planckian: <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mi>φ</mi>\n <mo>≤</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\Delta \\varphi \\le 1$</annotation>\n </semantics></math>. For that phase analytic expressions are also provided for <span></span><math>\n <semantics>\n <mrow>\n <mo>∫</mo>\n <mo>(</mo>\n <msub>\n <mi>w</mi>\n <mi>φ</mi>\n </msub>\n <mo>+</mo>\n <mn>1</mn>\n <mo>)</mo>\n <mspace></mspace>\n <mi>d</mi>\n <mi>N</mi>\n </mrow>\n <annotation>$\\int (w_{\\varphi }+1)\\, {\\rm d}N$</annotation>\n </semantics></math> in terms of matter evolution; these are related to observational targets that are proposed. Finally, using the CPL parameterization, while discussing a phantom behavior, analytic bounds on <span></span><math>\n <semantics>\n <msub>\n <mi>w</mi>\n <mn>0</mn>\n </msub>\n <annotation>$w_0$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>w</mi>\n <mi>a</mi>\n </msub>\n <annotation>$w_a$</annotation>\n </semantics></math> are derived.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"73 6","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fortschritte Der Physik-Progress of Physics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/prop.70007","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The authors focus on minimally coupled (multi)field quintessence models, of thawing type, and their realistic solutions. In a model-independent manner, these cosmological solutions are described analytically throughout the universe history. Starting with a kination–radiation domination phase, an upper bound on the scalar potential is obtained to guarantee an early kination: V ( φ ) e 6 φ $V(\varphi) \ll e^{-\sqrt {6} \varphi }$ . Turning to the radiation–matter phase, analytic expressions are obtained for the scale factor a ( t ) $a(t)$ (not t ( a ) $t(a)$ ) and the scalar fields φ i ( t ) $\varphi ^i(t)$ (usually neglected). These allow us to evaluate analytically the freezing of scalar fields, typically Δ φ 10 2 $\Delta \varphi \lesssim 10^{-2}$ , as well as the transition moment of the dark energy equation of state parameter w φ $w_{\varphi }$ from + 1 $+1$ to 1 $-1$ , with excellent agreement to the numerics. Comments are made on this freezing in view of string theory model building, and of some cosmological events. Turning to the latest phase of matter–dark energy domination, it is shown that the (multi)field displacement is sub-Planckian: Δ φ 1 $\Delta \varphi \le 1$ . For that phase analytic expressions are also provided for ( w φ + 1 ) d N $\int (w_{\varphi }+1)\, {\rm d}N$ in terms of matter evolution; these are related to observational targets that are proposed. Finally, using the CPL parameterization, while discussing a phantom behavior, analytic bounds on w 0 $w_0$ and w a $w_a$ are derived.

精粹:具有理论和观察应用的分析研究
作者着重讨论了解冻型最小耦合(多)场精粹模型及其现实解。以一种与模型无关的方式,这些宇宙学解在整个宇宙历史中被解析地描述。从激活-辐射控制阶段开始,求出标量势的上界以保证早期激活:V (φ)≪e−6 φ $V(\varphi) \ll e^{-\sqrt {6} \varphi }$。转到辐射物质阶段,得到了尺度因子a (t) $a(t)$(不是t (a) $t(a)$)和标量场φ I的解析表达式(t) $\varphi ^i(t)$(通常被忽视)。这使我们能够分析地计算标量场的冻结,通常是Δ φ≤10−2 $\Delta \varphi \lesssim 10^{-2}$,以及状态参数w φ $w_{\varphi }$的暗能量方程从+ 1 $+1$到−1 $-1$的跃迁矩,与数字非常吻合。从建立弦理论模型和一些宇宙学事件的角度对这种冻结作了评论。转到物质-暗能量主导的最新阶段,表明(多)场位移是亚普朗克的:Δ φ≤1 $\Delta \varphi \le 1$。对于该相,还提供了∫(w φ + 1) d N $\int (w_{\varphi }+1)\, {\rm d}N$的物质演化解析表达式;这些都与提出的观测目标有关。最后,利用CPL参数化方法,在讨论虚影行为的同时,导出了w0 $w_0$和wa $w_a$上的解析界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
7.70%
发文量
75
审稿时长
6-12 weeks
期刊介绍: The journal Fortschritte der Physik - Progress of Physics is a pure online Journal (since 2013). Fortschritte der Physik - Progress of Physics is devoted to the theoretical and experimental studies of fundamental constituents of matter and their interactions e. g. elementary particle physics, classical and quantum field theory, the theory of gravitation and cosmology, quantum information, thermodynamics and statistics, laser physics and nonlinear dynamics, including chaos and quantum chaos. Generally the papers are review articles with a detailed survey on relevant publications, but original papers of general interest are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信