{"title":"f(Q)$ f(Q)$重力中生长指数参数的观测约束","authors":"Dalale Mhamdi, Safae Dahmani, Amine Bouali, Imad El Bojaddaini, Taoufik Ouali","doi":"10.1002/prop.70008","DOIUrl":null,"url":null,"abstract":"<p>In this study, the authors analyze constraints on the growth index of matter perturbations, <span></span><math>\n <semantics>\n <mi>γ</mi>\n <annotation>$\\gamma$</annotation>\n </semantics></math>, within the framework of <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>Q</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$f(Q)$</annotation>\n </semantics></math> gravity, using recent cosmological observations, at the background and the perturbation levels, including <span></span><math>\n <semantics>\n <msup>\n <mtext>Pantheon</mtext>\n <mo>+</mo>\n </msup>\n <annotation>$\\text{Pantheon}^{+}$</annotation>\n </semantics></math>, Cosmic Chronometer (CC), and Redshift Space Distortion (RSD) datasets. The analysis focuses on quantifying the distortion parameter, which measures the deviation of the <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>Q</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$f(Q)$</annotation>\n </semantics></math> gravity model from the concordance <span></span><math>\n <semantics>\n <mi>Λ</mi>\n <annotation>$\\Lambda$</annotation>\n </semantics></math> CDM cosmology at the background level. Specifically, two cases of the growth index parameter are investigated: a constant <span></span><math>\n <semantics>\n <mi>γ</mi>\n <annotation>$\\gamma$</annotation>\n </semantics></math> and a time-varying <span></span><math>\n <semantics>\n <mrow>\n <mi>γ</mi>\n <mo>(</mo>\n <mi>z</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\gamma (z)$</annotation>\n </semantics></math>. The various parametrizations of the growth index <span></span><math>\n <semantics>\n <mi>γ</mi>\n <annotation>$\\gamma$</annotation>\n </semantics></math> are investigated, expressed as <span></span><math>\n <semantics>\n <mrow>\n <mi>γ</mi>\n <mo>=</mo>\n <msub>\n <mi>γ</mi>\n <mn>0</mn>\n </msub>\n <mo>+</mo>\n <msub>\n <mi>γ</mi>\n <mn>1</mn>\n </msub>\n <mi>y</mi>\n <mrow>\n <mo>(</mo>\n <mi>z</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\gamma = \\gamma _{0} +\\gamma _{1} y(z)$</annotation>\n </semantics></math>, where the function <span></span><math>\n <semantics>\n <mrow>\n <mi>y</mi>\n <mo>(</mo>\n <mi>z</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$y(z)$</annotation>\n </semantics></math> assumes different forms, including constant (<span></span><math>\n <semantics>\n <msub>\n <mi>Γ</mi>\n <mn>0</mn>\n </msub>\n <annotation>$\\Gamma _{0}$</annotation>\n </semantics></math>), Taylor expansion around <span></span><math>\n <semantics>\n <mrow>\n <mi>z</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$z = 0$</annotation>\n </semantics></math> (<span></span><math>\n <semantics>\n <msub>\n <mi>Γ</mi>\n <mn>1</mn>\n </msub>\n <annotation>$\\Gamma _{1}$</annotation>\n </semantics></math>), Taylor expansion around the scale factor (<span></span><math>\n <semantics>\n <msub>\n <mi>Γ</mi>\n <mn>2</mn>\n </msub>\n <annotation>$\\Gamma _{2}$</annotation>\n </semantics></math>), and an exponential form (<span></span><math>\n <semantics>\n <msub>\n <mi>Γ</mi>\n <mn>3</mn>\n </msub>\n <annotation>$\\Gamma _{3}$</annotation>\n </semantics></math>). By employing the Akaike Information Criterion and Bayesian Information Criterion, authors find that the combined <span></span><math>\n <semantics>\n <msup>\n <mtext>Pantheon</mtext>\n <mo>+</mo>\n </msup>\n <annotation>$\\text{Pantheon}^{+}$</annotation>\n </semantics></math>+ CC+ RSD datasets impose stringent constraints on the value of the growth index. For the <span></span><math>\n <semantics>\n <msub>\n <mi>Γ</mi>\n <mn>0</mn>\n </msub>\n <annotation>$\\Gamma _{0}$</annotation>\n </semantics></math> model, the results indicate that within the concordance <span></span><math>\n <semantics>\n <mi>Λ</mi>\n <annotation>$\\Lambda$</annotation>\n </semantics></math> CDM model, <span></span><math>\n <semantics>\n <mi>γ</mi>\n <annotation>$\\gamma$</annotation>\n </semantics></math> is constrained to <span></span><math>\n <semantics>\n <mrow>\n <mn>0.545</mn>\n <mo>±</mo>\n <mn>0.096</mn>\n </mrow>\n <annotation>$0.545 \\pm 0.096$</annotation>\n </semantics></math>, showing strong agreement with the theoretical expectation of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>γ</mi>\n <mi>Λ</mi>\n </msub>\n <mo>=</mo>\n <mfrac>\n <mn>6</mn>\n <mn>11</mn>\n </mfrac>\n </mrow>\n <annotation>$\\gamma _{\\Lambda } = \\frac{6}{11}$</annotation>\n </semantics></math>. However, within the framework of <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>Q</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$f(Q)$</annotation>\n </semantics></math> gravity, authors find <span></span><math>\n <semantics>\n <mrow>\n <mi>γ</mi>\n <mo>=</mo>\n <mn>0</mn>\n <mo>.</mo>\n <msubsup>\n <mn>57</mn>\n <mrow>\n <mo>−</mo>\n <mn>0.110</mn>\n </mrow>\n <mrow>\n <mo>+</mo>\n <mn>0.095</mn>\n </mrow>\n </msubsup>\n </mrow>\n <annotation>$\\gamma = 0.57^{+0.095}_{-0.110}$</annotation>\n </semantics></math>, which is in a good agreement within <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mi>σ</mi>\n </mrow>\n <annotation>$1\\sigma$</annotation>\n </semantics></math> errors of the <span></span><math>\n <semantics>\n <mi>Λ</mi>\n <annotation>$\\Lambda$</annotation>\n </semantics></math> CDM (with a difference of 0.18<span></span><math>\n <semantics>\n <mi>σ</mi>\n <annotation>$\\sigma$</annotation>\n </semantics></math>). Furthermore, when considering a time-varying growth index, the analysis reveals that the range of <span></span><math>\n <semantics>\n <msub>\n <mi>γ</mi>\n <mn>0</mn>\n </msub>\n <annotation>$\\gamma _{0}$</annotation>\n </semantics></math> spans from 0.596 to 0.62 across the <span></span><math>\n <semantics>\n <msub>\n <mi>Γ</mi>\n <mrow>\n <mn>1</mn>\n <mo>−</mo>\n <mn>3</mn>\n </mrow>\n </msub>\n <annotation>$\\Gamma _{1-3}$</annotation>\n </semantics></math> models. Finally, authors compare the obtained results for the growth index parameters within <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>Q</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$f(Q)$</annotation>\n </semantics></math> with those from previous studies on modified gravity theories, such as <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$f(R)$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>T</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$f(T)$</annotation>\n </semantics></math>.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"73 7","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observational Constraints On the Growth Index Parameters in \\n \\n \\n f\\n (\\n Q\\n )\\n \\n $f(Q)$\\n Gravity\",\"authors\":\"Dalale Mhamdi, Safae Dahmani, Amine Bouali, Imad El Bojaddaini, Taoufik Ouali\",\"doi\":\"10.1002/prop.70008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, the authors analyze constraints on the growth index of matter perturbations, <span></span><math>\\n <semantics>\\n <mi>γ</mi>\\n <annotation>$\\\\gamma$</annotation>\\n </semantics></math>, within the framework of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>Q</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$f(Q)$</annotation>\\n </semantics></math> gravity, using recent cosmological observations, at the background and the perturbation levels, including <span></span><math>\\n <semantics>\\n <msup>\\n <mtext>Pantheon</mtext>\\n <mo>+</mo>\\n </msup>\\n <annotation>$\\\\text{Pantheon}^{+}$</annotation>\\n </semantics></math>, Cosmic Chronometer (CC), and Redshift Space Distortion (RSD) datasets. The analysis focuses on quantifying the distortion parameter, which measures the deviation of the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>Q</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$f(Q)$</annotation>\\n </semantics></math> gravity model from the concordance <span></span><math>\\n <semantics>\\n <mi>Λ</mi>\\n <annotation>$\\\\Lambda$</annotation>\\n </semantics></math> CDM cosmology at the background level. Specifically, two cases of the growth index parameter are investigated: a constant <span></span><math>\\n <semantics>\\n <mi>γ</mi>\\n <annotation>$\\\\gamma$</annotation>\\n </semantics></math> and a time-varying <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>γ</mi>\\n <mo>(</mo>\\n <mi>z</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\gamma (z)$</annotation>\\n </semantics></math>. The various parametrizations of the growth index <span></span><math>\\n <semantics>\\n <mi>γ</mi>\\n <annotation>$\\\\gamma$</annotation>\\n </semantics></math> are investigated, expressed as <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>γ</mi>\\n <mo>=</mo>\\n <msub>\\n <mi>γ</mi>\\n <mn>0</mn>\\n </msub>\\n <mo>+</mo>\\n <msub>\\n <mi>γ</mi>\\n <mn>1</mn>\\n </msub>\\n <mi>y</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>z</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\gamma = \\\\gamma _{0} +\\\\gamma _{1} y(z)$</annotation>\\n </semantics></math>, where the function <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>y</mi>\\n <mo>(</mo>\\n <mi>z</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$y(z)$</annotation>\\n </semantics></math> assumes different forms, including constant (<span></span><math>\\n <semantics>\\n <msub>\\n <mi>Γ</mi>\\n <mn>0</mn>\\n </msub>\\n <annotation>$\\\\Gamma _{0}$</annotation>\\n </semantics></math>), Taylor expansion around <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>z</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$z = 0$</annotation>\\n </semantics></math> (<span></span><math>\\n <semantics>\\n <msub>\\n <mi>Γ</mi>\\n <mn>1</mn>\\n </msub>\\n <annotation>$\\\\Gamma _{1}$</annotation>\\n </semantics></math>), Taylor expansion around the scale factor (<span></span><math>\\n <semantics>\\n <msub>\\n <mi>Γ</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>$\\\\Gamma _{2}$</annotation>\\n </semantics></math>), and an exponential form (<span></span><math>\\n <semantics>\\n <msub>\\n <mi>Γ</mi>\\n <mn>3</mn>\\n </msub>\\n <annotation>$\\\\Gamma _{3}$</annotation>\\n </semantics></math>). By employing the Akaike Information Criterion and Bayesian Information Criterion, authors find that the combined <span></span><math>\\n <semantics>\\n <msup>\\n <mtext>Pantheon</mtext>\\n <mo>+</mo>\\n </msup>\\n <annotation>$\\\\text{Pantheon}^{+}$</annotation>\\n </semantics></math>+ CC+ RSD datasets impose stringent constraints on the value of the growth index. For the <span></span><math>\\n <semantics>\\n <msub>\\n <mi>Γ</mi>\\n <mn>0</mn>\\n </msub>\\n <annotation>$\\\\Gamma _{0}$</annotation>\\n </semantics></math> model, the results indicate that within the concordance <span></span><math>\\n <semantics>\\n <mi>Λ</mi>\\n <annotation>$\\\\Lambda$</annotation>\\n </semantics></math> CDM model, <span></span><math>\\n <semantics>\\n <mi>γ</mi>\\n <annotation>$\\\\gamma$</annotation>\\n </semantics></math> is constrained to <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>0.545</mn>\\n <mo>±</mo>\\n <mn>0.096</mn>\\n </mrow>\\n <annotation>$0.545 \\\\pm 0.096$</annotation>\\n </semantics></math>, showing strong agreement with the theoretical expectation of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>γ</mi>\\n <mi>Λ</mi>\\n </msub>\\n <mo>=</mo>\\n <mfrac>\\n <mn>6</mn>\\n <mn>11</mn>\\n </mfrac>\\n </mrow>\\n <annotation>$\\\\gamma _{\\\\Lambda } = \\\\frac{6}{11}$</annotation>\\n </semantics></math>. However, within the framework of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>Q</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$f(Q)$</annotation>\\n </semantics></math> gravity, authors find <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>γ</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n <mo>.</mo>\\n <msubsup>\\n <mn>57</mn>\\n <mrow>\\n <mo>−</mo>\\n <mn>0.110</mn>\\n </mrow>\\n <mrow>\\n <mo>+</mo>\\n <mn>0.095</mn>\\n </mrow>\\n </msubsup>\\n </mrow>\\n <annotation>$\\\\gamma = 0.57^{+0.095}_{-0.110}$</annotation>\\n </semantics></math>, which is in a good agreement within <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>1</mn>\\n <mi>σ</mi>\\n </mrow>\\n <annotation>$1\\\\sigma$</annotation>\\n </semantics></math> errors of the <span></span><math>\\n <semantics>\\n <mi>Λ</mi>\\n <annotation>$\\\\Lambda$</annotation>\\n </semantics></math> CDM (with a difference of 0.18<span></span><math>\\n <semantics>\\n <mi>σ</mi>\\n <annotation>$\\\\sigma$</annotation>\\n </semantics></math>). Furthermore, when considering a time-varying growth index, the analysis reveals that the range of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>γ</mi>\\n <mn>0</mn>\\n </msub>\\n <annotation>$\\\\gamma _{0}$</annotation>\\n </semantics></math> spans from 0.596 to 0.62 across the <span></span><math>\\n <semantics>\\n <msub>\\n <mi>Γ</mi>\\n <mrow>\\n <mn>1</mn>\\n <mo>−</mo>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n <annotation>$\\\\Gamma _{1-3}$</annotation>\\n </semantics></math> models. Finally, authors compare the obtained results for the growth index parameters within <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>Q</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$f(Q)$</annotation>\\n </semantics></math> with those from previous studies on modified gravity theories, such as <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>R</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$f(R)$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>T</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$f(T)$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":55150,\"journal\":{\"name\":\"Fortschritte Der Physik-Progress of Physics\",\"volume\":\"73 7\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fortschritte Der Physik-Progress of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/prop.70008\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fortschritte Der Physik-Progress of Physics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/prop.70008","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Observational Constraints On the Growth Index Parameters in
f
(
Q
)
$f(Q)$
Gravity
In this study, the authors analyze constraints on the growth index of matter perturbations, , within the framework of gravity, using recent cosmological observations, at the background and the perturbation levels, including , Cosmic Chronometer (CC), and Redshift Space Distortion (RSD) datasets. The analysis focuses on quantifying the distortion parameter, which measures the deviation of the gravity model from the concordance CDM cosmology at the background level. Specifically, two cases of the growth index parameter are investigated: a constant and a time-varying . The various parametrizations of the growth index are investigated, expressed as , where the function assumes different forms, including constant (), Taylor expansion around (), Taylor expansion around the scale factor (), and an exponential form (). By employing the Akaike Information Criterion and Bayesian Information Criterion, authors find that the combined + CC+ RSD datasets impose stringent constraints on the value of the growth index. For the model, the results indicate that within the concordance CDM model, is constrained to , showing strong agreement with the theoretical expectation of . However, within the framework of gravity, authors find , which is in a good agreement within errors of the CDM (with a difference of 0.18). Furthermore, when considering a time-varying growth index, the analysis reveals that the range of spans from 0.596 to 0.62 across the models. Finally, authors compare the obtained results for the growth index parameters within with those from previous studies on modified gravity theories, such as and .
期刊介绍:
The journal Fortschritte der Physik - Progress of Physics is a pure online Journal (since 2013).
Fortschritte der Physik - Progress of Physics is devoted to the theoretical and experimental studies of fundamental constituents of matter and their interactions e. g. elementary particle physics, classical and quantum field theory, the theory of gravitation and cosmology, quantum information, thermodynamics and statistics, laser physics and nonlinear dynamics, including chaos and quantum chaos. Generally the papers are review articles with a detailed survey on relevant publications, but original papers of general interest are also published.