f(Q)$ f(Q)$重力中生长指数参数的观测约束

IF 5.6 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Dalale Mhamdi, Safae Dahmani, Amine Bouali, Imad El Bojaddaini, Taoufik Ouali
{"title":"f(Q)$ f(Q)$重力中生长指数参数的观测约束","authors":"Dalale Mhamdi,&nbsp;Safae Dahmani,&nbsp;Amine Bouali,&nbsp;Imad El Bojaddaini,&nbsp;Taoufik Ouali","doi":"10.1002/prop.70008","DOIUrl":null,"url":null,"abstract":"<p>In this study, the authors analyze constraints on the growth index of matter perturbations, <span></span><math>\n <semantics>\n <mi>γ</mi>\n <annotation>$\\gamma$</annotation>\n </semantics></math>, within the framework of <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>Q</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$f(Q)$</annotation>\n </semantics></math> gravity, using recent cosmological observations, at the background and the perturbation levels, including <span></span><math>\n <semantics>\n <msup>\n <mtext>Pantheon</mtext>\n <mo>+</mo>\n </msup>\n <annotation>$\\text{Pantheon}^{+}$</annotation>\n </semantics></math>, Cosmic Chronometer (CC), and Redshift Space Distortion (RSD) datasets. The analysis focuses on quantifying the distortion parameter, which measures the deviation of the <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>Q</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$f(Q)$</annotation>\n </semantics></math> gravity model from the concordance <span></span><math>\n <semantics>\n <mi>Λ</mi>\n <annotation>$\\Lambda$</annotation>\n </semantics></math> CDM cosmology at the background level. Specifically, two cases of the growth index parameter are investigated: a constant <span></span><math>\n <semantics>\n <mi>γ</mi>\n <annotation>$\\gamma$</annotation>\n </semantics></math> and a time-varying <span></span><math>\n <semantics>\n <mrow>\n <mi>γ</mi>\n <mo>(</mo>\n <mi>z</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\gamma (z)$</annotation>\n </semantics></math>. The various parametrizations of the growth index <span></span><math>\n <semantics>\n <mi>γ</mi>\n <annotation>$\\gamma$</annotation>\n </semantics></math> are investigated, expressed as <span></span><math>\n <semantics>\n <mrow>\n <mi>γ</mi>\n <mo>=</mo>\n <msub>\n <mi>γ</mi>\n <mn>0</mn>\n </msub>\n <mo>+</mo>\n <msub>\n <mi>γ</mi>\n <mn>1</mn>\n </msub>\n <mi>y</mi>\n <mrow>\n <mo>(</mo>\n <mi>z</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\gamma = \\gamma _{0} +\\gamma _{1} y(z)$</annotation>\n </semantics></math>, where the function <span></span><math>\n <semantics>\n <mrow>\n <mi>y</mi>\n <mo>(</mo>\n <mi>z</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$y(z)$</annotation>\n </semantics></math> assumes different forms, including constant (<span></span><math>\n <semantics>\n <msub>\n <mi>Γ</mi>\n <mn>0</mn>\n </msub>\n <annotation>$\\Gamma _{0}$</annotation>\n </semantics></math>), Taylor expansion around <span></span><math>\n <semantics>\n <mrow>\n <mi>z</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$z = 0$</annotation>\n </semantics></math> (<span></span><math>\n <semantics>\n <msub>\n <mi>Γ</mi>\n <mn>1</mn>\n </msub>\n <annotation>$\\Gamma _{1}$</annotation>\n </semantics></math>), Taylor expansion around the scale factor (<span></span><math>\n <semantics>\n <msub>\n <mi>Γ</mi>\n <mn>2</mn>\n </msub>\n <annotation>$\\Gamma _{2}$</annotation>\n </semantics></math>), and an exponential form (<span></span><math>\n <semantics>\n <msub>\n <mi>Γ</mi>\n <mn>3</mn>\n </msub>\n <annotation>$\\Gamma _{3}$</annotation>\n </semantics></math>). By employing the Akaike Information Criterion and Bayesian Information Criterion, authors find that the combined <span></span><math>\n <semantics>\n <msup>\n <mtext>Pantheon</mtext>\n <mo>+</mo>\n </msup>\n <annotation>$\\text{Pantheon}^{+}$</annotation>\n </semantics></math>+ CC+ RSD datasets impose stringent constraints on the value of the growth index. For the <span></span><math>\n <semantics>\n <msub>\n <mi>Γ</mi>\n <mn>0</mn>\n </msub>\n <annotation>$\\Gamma _{0}$</annotation>\n </semantics></math> model, the results indicate that within the concordance <span></span><math>\n <semantics>\n <mi>Λ</mi>\n <annotation>$\\Lambda$</annotation>\n </semantics></math> CDM model, <span></span><math>\n <semantics>\n <mi>γ</mi>\n <annotation>$\\gamma$</annotation>\n </semantics></math> is constrained to <span></span><math>\n <semantics>\n <mrow>\n <mn>0.545</mn>\n <mo>±</mo>\n <mn>0.096</mn>\n </mrow>\n <annotation>$0.545 \\pm 0.096$</annotation>\n </semantics></math>, showing strong agreement with the theoretical expectation of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>γ</mi>\n <mi>Λ</mi>\n </msub>\n <mo>=</mo>\n <mfrac>\n <mn>6</mn>\n <mn>11</mn>\n </mfrac>\n </mrow>\n <annotation>$\\gamma _{\\Lambda } = \\frac{6}{11}$</annotation>\n </semantics></math>. However, within the framework of <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>Q</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$f(Q)$</annotation>\n </semantics></math> gravity, authors find <span></span><math>\n <semantics>\n <mrow>\n <mi>γ</mi>\n <mo>=</mo>\n <mn>0</mn>\n <mo>.</mo>\n <msubsup>\n <mn>57</mn>\n <mrow>\n <mo>−</mo>\n <mn>0.110</mn>\n </mrow>\n <mrow>\n <mo>+</mo>\n <mn>0.095</mn>\n </mrow>\n </msubsup>\n </mrow>\n <annotation>$\\gamma = 0.57^{+0.095}_{-0.110}$</annotation>\n </semantics></math>, which is in a good agreement within <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mi>σ</mi>\n </mrow>\n <annotation>$1\\sigma$</annotation>\n </semantics></math> errors of the <span></span><math>\n <semantics>\n <mi>Λ</mi>\n <annotation>$\\Lambda$</annotation>\n </semantics></math> CDM (with a difference of 0.18<span></span><math>\n <semantics>\n <mi>σ</mi>\n <annotation>$\\sigma$</annotation>\n </semantics></math>). Furthermore, when considering a time-varying growth index, the analysis reveals that the range of <span></span><math>\n <semantics>\n <msub>\n <mi>γ</mi>\n <mn>0</mn>\n </msub>\n <annotation>$\\gamma _{0}$</annotation>\n </semantics></math> spans from 0.596 to 0.62 across the <span></span><math>\n <semantics>\n <msub>\n <mi>Γ</mi>\n <mrow>\n <mn>1</mn>\n <mo>−</mo>\n <mn>3</mn>\n </mrow>\n </msub>\n <annotation>$\\Gamma _{1-3}$</annotation>\n </semantics></math> models. Finally, authors compare the obtained results for the growth index parameters within <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>Q</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$f(Q)$</annotation>\n </semantics></math> with those from previous studies on modified gravity theories, such as <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$f(R)$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>T</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$f(T)$</annotation>\n </semantics></math>.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"73 7","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observational Constraints On the Growth Index Parameters in \\n \\n \\n f\\n (\\n Q\\n )\\n \\n $f(Q)$\\n Gravity\",\"authors\":\"Dalale Mhamdi,&nbsp;Safae Dahmani,&nbsp;Amine Bouali,&nbsp;Imad El Bojaddaini,&nbsp;Taoufik Ouali\",\"doi\":\"10.1002/prop.70008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, the authors analyze constraints on the growth index of matter perturbations, <span></span><math>\\n <semantics>\\n <mi>γ</mi>\\n <annotation>$\\\\gamma$</annotation>\\n </semantics></math>, within the framework of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>Q</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$f(Q)$</annotation>\\n </semantics></math> gravity, using recent cosmological observations, at the background and the perturbation levels, including <span></span><math>\\n <semantics>\\n <msup>\\n <mtext>Pantheon</mtext>\\n <mo>+</mo>\\n </msup>\\n <annotation>$\\\\text{Pantheon}^{+}$</annotation>\\n </semantics></math>, Cosmic Chronometer (CC), and Redshift Space Distortion (RSD) datasets. The analysis focuses on quantifying the distortion parameter, which measures the deviation of the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>Q</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$f(Q)$</annotation>\\n </semantics></math> gravity model from the concordance <span></span><math>\\n <semantics>\\n <mi>Λ</mi>\\n <annotation>$\\\\Lambda$</annotation>\\n </semantics></math> CDM cosmology at the background level. Specifically, two cases of the growth index parameter are investigated: a constant <span></span><math>\\n <semantics>\\n <mi>γ</mi>\\n <annotation>$\\\\gamma$</annotation>\\n </semantics></math> and a time-varying <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>γ</mi>\\n <mo>(</mo>\\n <mi>z</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\gamma (z)$</annotation>\\n </semantics></math>. The various parametrizations of the growth index <span></span><math>\\n <semantics>\\n <mi>γ</mi>\\n <annotation>$\\\\gamma$</annotation>\\n </semantics></math> are investigated, expressed as <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>γ</mi>\\n <mo>=</mo>\\n <msub>\\n <mi>γ</mi>\\n <mn>0</mn>\\n </msub>\\n <mo>+</mo>\\n <msub>\\n <mi>γ</mi>\\n <mn>1</mn>\\n </msub>\\n <mi>y</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>z</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\gamma = \\\\gamma _{0} +\\\\gamma _{1} y(z)$</annotation>\\n </semantics></math>, where the function <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>y</mi>\\n <mo>(</mo>\\n <mi>z</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$y(z)$</annotation>\\n </semantics></math> assumes different forms, including constant (<span></span><math>\\n <semantics>\\n <msub>\\n <mi>Γ</mi>\\n <mn>0</mn>\\n </msub>\\n <annotation>$\\\\Gamma _{0}$</annotation>\\n </semantics></math>), Taylor expansion around <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>z</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$z = 0$</annotation>\\n </semantics></math> (<span></span><math>\\n <semantics>\\n <msub>\\n <mi>Γ</mi>\\n <mn>1</mn>\\n </msub>\\n <annotation>$\\\\Gamma _{1}$</annotation>\\n </semantics></math>), Taylor expansion around the scale factor (<span></span><math>\\n <semantics>\\n <msub>\\n <mi>Γ</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>$\\\\Gamma _{2}$</annotation>\\n </semantics></math>), and an exponential form (<span></span><math>\\n <semantics>\\n <msub>\\n <mi>Γ</mi>\\n <mn>3</mn>\\n </msub>\\n <annotation>$\\\\Gamma _{3}$</annotation>\\n </semantics></math>). By employing the Akaike Information Criterion and Bayesian Information Criterion, authors find that the combined <span></span><math>\\n <semantics>\\n <msup>\\n <mtext>Pantheon</mtext>\\n <mo>+</mo>\\n </msup>\\n <annotation>$\\\\text{Pantheon}^{+}$</annotation>\\n </semantics></math>+ CC+ RSD datasets impose stringent constraints on the value of the growth index. For the <span></span><math>\\n <semantics>\\n <msub>\\n <mi>Γ</mi>\\n <mn>0</mn>\\n </msub>\\n <annotation>$\\\\Gamma _{0}$</annotation>\\n </semantics></math> model, the results indicate that within the concordance <span></span><math>\\n <semantics>\\n <mi>Λ</mi>\\n <annotation>$\\\\Lambda$</annotation>\\n </semantics></math> CDM model, <span></span><math>\\n <semantics>\\n <mi>γ</mi>\\n <annotation>$\\\\gamma$</annotation>\\n </semantics></math> is constrained to <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>0.545</mn>\\n <mo>±</mo>\\n <mn>0.096</mn>\\n </mrow>\\n <annotation>$0.545 \\\\pm 0.096$</annotation>\\n </semantics></math>, showing strong agreement with the theoretical expectation of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>γ</mi>\\n <mi>Λ</mi>\\n </msub>\\n <mo>=</mo>\\n <mfrac>\\n <mn>6</mn>\\n <mn>11</mn>\\n </mfrac>\\n </mrow>\\n <annotation>$\\\\gamma _{\\\\Lambda } = \\\\frac{6}{11}$</annotation>\\n </semantics></math>. However, within the framework of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>Q</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$f(Q)$</annotation>\\n </semantics></math> gravity, authors find <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>γ</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n <mo>.</mo>\\n <msubsup>\\n <mn>57</mn>\\n <mrow>\\n <mo>−</mo>\\n <mn>0.110</mn>\\n </mrow>\\n <mrow>\\n <mo>+</mo>\\n <mn>0.095</mn>\\n </mrow>\\n </msubsup>\\n </mrow>\\n <annotation>$\\\\gamma = 0.57^{+0.095}_{-0.110}$</annotation>\\n </semantics></math>, which is in a good agreement within <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>1</mn>\\n <mi>σ</mi>\\n </mrow>\\n <annotation>$1\\\\sigma$</annotation>\\n </semantics></math> errors of the <span></span><math>\\n <semantics>\\n <mi>Λ</mi>\\n <annotation>$\\\\Lambda$</annotation>\\n </semantics></math> CDM (with a difference of 0.18<span></span><math>\\n <semantics>\\n <mi>σ</mi>\\n <annotation>$\\\\sigma$</annotation>\\n </semantics></math>). Furthermore, when considering a time-varying growth index, the analysis reveals that the range of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>γ</mi>\\n <mn>0</mn>\\n </msub>\\n <annotation>$\\\\gamma _{0}$</annotation>\\n </semantics></math> spans from 0.596 to 0.62 across the <span></span><math>\\n <semantics>\\n <msub>\\n <mi>Γ</mi>\\n <mrow>\\n <mn>1</mn>\\n <mo>−</mo>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n <annotation>$\\\\Gamma _{1-3}$</annotation>\\n </semantics></math> models. Finally, authors compare the obtained results for the growth index parameters within <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>Q</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$f(Q)$</annotation>\\n </semantics></math> with those from previous studies on modified gravity theories, such as <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>R</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$f(R)$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>T</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$f(T)$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":55150,\"journal\":{\"name\":\"Fortschritte Der Physik-Progress of Physics\",\"volume\":\"73 7\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fortschritte Der Physik-Progress of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/prop.70008\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fortschritte Der Physik-Progress of Physics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/prop.70008","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,作者利用最近的宇宙学观测,在背景和扰动水平上,分析了f (Q) $f(Q)$引力框架内物质扰动γ $\gamma$增长指数的约束条件。包括Pantheon + $\text{Pantheon}^{+}$, Cosmic Chronometer (CC)和Redshift Space Distortion (RSD)数据集。分析的重点是量化扭曲参数,该参数在背景水平上测量f (Q) $f(Q)$引力模型与协和Λ $\Lambda$ CDM宇宙学的偏差。具体地说,研究了生长指数参数的两种情况:恒定的γ $\gamma$和时变的γ (z) $\gamma (z)$。研究了生长指数γ $\gamma$的各种参数化。表示为γ = γ 0 + γ 1 y (z) $\gamma = \gamma _{0} +\gamma _{1} y(z)$,其中函数y (z) $y(z)$采用不同的形式,包括常数(Γ 0 $\Gamma _{0}$),围绕z = 0的泰勒展开$z = 0$ (Γ 1 $\Gamma _{1}$),围绕比例因子的泰勒展开(Γ 2 $\Gamma _{2}$)指数形式(Γ 3 $\Gamma _{3}$)通过使用赤池信息准则和贝叶斯信息准则,作者发现Pantheon + $\text{Pantheon}^{+}$ + CC+ RSD组合数据集对增长指数的值有严格的约束。对于Γ 0 $\Gamma _{0}$模型,结果表明,在一致性Λ $\Lambda$ CDM模型中,γ $\gamma$约束为0.545±0.096 $0.545 \pm 0.096$,与γ Λ = 6 11 $\gamma _{\Lambda } = \frac{6}{11}$的理论期望值非常吻合。然而,在f (Q) $f(Q)$引力的框架内,作者发现γ = 0。57−0.110 + 0.095 $\gamma = 0.57^{+0.095}_{-0.110}$,哪一个在Λ $\Lambda$的1 σ $1\sigma$误差范围内是一致的 18 σ $\sigma$)。此外,当考虑时变生长指数时,分析表明,在Γ 1−3 $\Gamma _{1-3}$模型中,γ 0 $\gamma _{0}$的范围从0.596到0.62。最后,作者将f (Q) $f(Q)$内的生长指数参数与先前修正重力理论的研究结果进行了比较。如f (R) $f(R)$和f (T) $f(T)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Observational Constraints On the Growth Index Parameters in f ( Q ) $f(Q)$ Gravity

In this study, the authors analyze constraints on the growth index of matter perturbations, γ $\gamma$ , within the framework of f ( Q ) $f(Q)$ gravity, using recent cosmological observations, at the background and the perturbation levels, including Pantheon + $\text{Pantheon}^{+}$ , Cosmic Chronometer (CC), and Redshift Space Distortion (RSD) datasets. The analysis focuses on quantifying the distortion parameter, which measures the deviation of the f ( Q ) $f(Q)$ gravity model from the concordance Λ $\Lambda$ CDM cosmology at the background level. Specifically, two cases of the growth index parameter are investigated: a constant γ $\gamma$ and a time-varying γ ( z ) $\gamma (z)$ . The various parametrizations of the growth index γ $\gamma$ are investigated, expressed as γ = γ 0 + γ 1 y ( z ) $\gamma = \gamma _{0} +\gamma _{1} y(z)$ , where the function y ( z ) $y(z)$ assumes different forms, including constant ( Γ 0 $\Gamma _{0}$ ), Taylor expansion around z = 0 $z = 0$ ( Γ 1 $\Gamma _{1}$ ), Taylor expansion around the scale factor ( Γ 2 $\Gamma _{2}$ ), and an exponential form ( Γ 3 $\Gamma _{3}$ ). By employing the Akaike Information Criterion and Bayesian Information Criterion, authors find that the combined Pantheon + $\text{Pantheon}^{+}$ + CC+ RSD datasets impose stringent constraints on the value of the growth index. For the Γ 0 $\Gamma _{0}$ model, the results indicate that within the concordance Λ $\Lambda$ CDM model, γ $\gamma$ is constrained to 0.545 ± 0.096 $0.545 \pm 0.096$ , showing strong agreement with the theoretical expectation of γ Λ = 6 11 $\gamma _{\Lambda } = \frac{6}{11}$ . However, within the framework of f ( Q ) $f(Q)$ gravity, authors find γ = 0 . 57 0.110 + 0.095 $\gamma = 0.57^{+0.095}_{-0.110}$ , which is in a good agreement within 1 σ $1\sigma$ errors of the Λ $\Lambda$ CDM (with a difference of 0.18 σ $\sigma$ ). Furthermore, when considering a time-varying growth index, the analysis reveals that the range of γ 0 $\gamma _{0}$ spans from 0.596 to 0.62 across the Γ 1 3 $\Gamma _{1-3}$ models. Finally, authors compare the obtained results for the growth index parameters within f ( Q ) $f(Q)$ with those from previous studies on modified gravity theories, such as f ( R ) $f(R)$ and f ( T ) $f(T)$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
7.70%
发文量
75
审稿时长
6-12 weeks
期刊介绍: The journal Fortschritte der Physik - Progress of Physics is a pure online Journal (since 2013). Fortschritte der Physik - Progress of Physics is devoted to the theoretical and experimental studies of fundamental constituents of matter and their interactions e. g. elementary particle physics, classical and quantum field theory, the theory of gravitation and cosmology, quantum information, thermodynamics and statistics, laser physics and nonlinear dynamics, including chaos and quantum chaos. Generally the papers are review articles with a detailed survey on relevant publications, but original papers of general interest are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信