通过重子声振荡探索霍拉瓦-利夫希茨引力中 Eos 参数化的晚期宇宙加速度

IF 5.6 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Madhur Khurana, Himanshu Chaudhary, Ujjal Debnath, Alok Sardar, Ghulam Mustafa
{"title":"通过重子声振荡探索霍拉瓦-利夫希茨引力中 Eos 参数化的晚期宇宙加速度","authors":"Madhur Khurana,&nbsp;Himanshu Chaudhary,&nbsp;Ujjal Debnath,&nbsp;Alok Sardar,&nbsp;Ghulam Mustafa","doi":"10.1002/prop.202300238","DOIUrl":null,"url":null,"abstract":"<p>In this study, the framework of Horava-Lifshitz gravity to model the Universe's dark matter and dark energy (DE) components is adopted. Specifically, two recent parametrizations for DE models: the CBDRM-type and CADMM-type parameterizations is considered. In the analysis, the Hubble parameter is explicitly expressed, denoted as <math>\n <semantics>\n <mrow>\n <mi>H</mi>\n <mo>(</mo>\n <mi>z</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$H(z)$</annotation>\n </semantics></math>, for these two distinct dark energy models. By doing so, investigate and quantify the accelerated cosmic expansion rate characterizing the late-time Universe is aimed. This study uses a wide range of datasets. This dataset consists of recent measurements of baryon acoustic oscillations (BAOs) collected over a period of 22 years with the Cosmic Chronometers (CC) dataset, Type Ia supernovae (SNIa) dataset, the Hubble diagram of gamma-ray bursts (GRBs), quasars (Q), and the latest measurement of the Hubble constant (R22). Consequently, a crucial aspect of this study by plotting the <math>\n <semantics>\n <msub>\n <mi>r</mi>\n <mi>d</mi>\n </msub>\n <annotation>$r_{d}$</annotation>\n </semantics></math> vs. <i>H</i><sub>0</sub> plane is presented. In the context of the ΛCDM model, after incorporating all the datasets, including the R22 prior, the following results: <i>H</i><sub>0</sub> = 71.674089 ± 0.734089 <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mi>m</mi>\n <msup>\n <mi>s</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mi>M</mi>\n <mi>p</mi>\n <msup>\n <mi>c</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$km s^{-1} Mpc^{-1}$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n <mi>d</mi>\n </msub>\n <mo>=</mo>\n <mn>143.050380</mn>\n <mi>M</mi>\n <mi>p</mi>\n <mi>c</mi>\n <mo>±</mo>\n <mn>3.702038</mn>\n </mrow>\n <annotation>$r_d = 143.050380 Mpc \\pm 3.702038$</annotation>\n </semantics></math> is obtained. For the CBDRM model, <i>H</i><sub>0</sub> = 72.355058 ± 1.004604 <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mi>m</mi>\n <msup>\n <mi>s</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mi>M</mi>\n <mi>p</mi>\n <msup>\n <mi>c</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$km s^{-1} Mpc^{-1}$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n <mi>d</mi>\n </msub>\n <mo>=</mo>\n <mn>144.835069</mn>\n <mi>M</mi>\n <mi>p</mi>\n <mi>c</mi>\n <mo>±</mo>\n <mn>2.378848</mn>\n </mrow>\n <annotation>$r_d = 144.835069 Mpc \\pm 2.378848$</annotation>\n </semantics></math> is found. In the case of the CADMM model, the analysis yields <i>H</i><sub>0</sub> = 72.347804 ± 0.923328 <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mi>m</mi>\n <msup>\n <mi>s</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mi>M</mi>\n <mi>p</mi>\n <msup>\n <mi>c</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$km s^{-1} Mpc^{-1}$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n <mi>d</mi>\n </msub>\n <mo>=</mo>\n <mn>144.466836</mn>\n <mi>M</mi>\n <mi>p</mi>\n <mi>c</mi>\n <mo>±</mo>\n <mn>4.288758</mn>\n </mrow>\n <annotation>$r_d = 144.466836 Mpc \\pm 4.288758$</annotation>\n </semantics></math>. Cosmographic analyses for both of the proposed parameterizations in comparison to the ΛCDM paradigm are conducted. Additionally, Diagnostic tests to investigate the evolution of both models is applied. Finally, the Information Criteria test demonstrates that the ΛCDM model emerges as the preferred choice among the models is considered.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"72 2","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Late-Time Cosmic Acceleration with Eos Parameterizations in Horava-Lifshitz Gravity via Baryon Acoustic Oscillations\",\"authors\":\"Madhur Khurana,&nbsp;Himanshu Chaudhary,&nbsp;Ujjal Debnath,&nbsp;Alok Sardar,&nbsp;Ghulam Mustafa\",\"doi\":\"10.1002/prop.202300238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, the framework of Horava-Lifshitz gravity to model the Universe's dark matter and dark energy (DE) components is adopted. Specifically, two recent parametrizations for DE models: the CBDRM-type and CADMM-type parameterizations is considered. In the analysis, the Hubble parameter is explicitly expressed, denoted as <math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n <mo>(</mo>\\n <mi>z</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$H(z)$</annotation>\\n </semantics></math>, for these two distinct dark energy models. By doing so, investigate and quantify the accelerated cosmic expansion rate characterizing the late-time Universe is aimed. This study uses a wide range of datasets. This dataset consists of recent measurements of baryon acoustic oscillations (BAOs) collected over a period of 22 years with the Cosmic Chronometers (CC) dataset, Type Ia supernovae (SNIa) dataset, the Hubble diagram of gamma-ray bursts (GRBs), quasars (Q), and the latest measurement of the Hubble constant (R22). Consequently, a crucial aspect of this study by plotting the <math>\\n <semantics>\\n <msub>\\n <mi>r</mi>\\n <mi>d</mi>\\n </msub>\\n <annotation>$r_{d}$</annotation>\\n </semantics></math> vs. <i>H</i><sub>0</sub> plane is presented. In the context of the ΛCDM model, after incorporating all the datasets, including the R22 prior, the following results: <i>H</i><sub>0</sub> = 71.674089 ± 0.734089 <math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mi>m</mi>\\n <msup>\\n <mi>s</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mi>M</mi>\\n <mi>p</mi>\\n <msup>\\n <mi>c</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$km s^{-1} Mpc^{-1}$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>r</mi>\\n <mi>d</mi>\\n </msub>\\n <mo>=</mo>\\n <mn>143.050380</mn>\\n <mi>M</mi>\\n <mi>p</mi>\\n <mi>c</mi>\\n <mo>±</mo>\\n <mn>3.702038</mn>\\n </mrow>\\n <annotation>$r_d = 143.050380 Mpc \\\\pm 3.702038$</annotation>\\n </semantics></math> is obtained. For the CBDRM model, <i>H</i><sub>0</sub> = 72.355058 ± 1.004604 <math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mi>m</mi>\\n <msup>\\n <mi>s</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mi>M</mi>\\n <mi>p</mi>\\n <msup>\\n <mi>c</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$km s^{-1} Mpc^{-1}$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>r</mi>\\n <mi>d</mi>\\n </msub>\\n <mo>=</mo>\\n <mn>144.835069</mn>\\n <mi>M</mi>\\n <mi>p</mi>\\n <mi>c</mi>\\n <mo>±</mo>\\n <mn>2.378848</mn>\\n </mrow>\\n <annotation>$r_d = 144.835069 Mpc \\\\pm 2.378848$</annotation>\\n </semantics></math> is found. In the case of the CADMM model, the analysis yields <i>H</i><sub>0</sub> = 72.347804 ± 0.923328 <math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mi>m</mi>\\n <msup>\\n <mi>s</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mi>M</mi>\\n <mi>p</mi>\\n <msup>\\n <mi>c</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$km s^{-1} Mpc^{-1}$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>r</mi>\\n <mi>d</mi>\\n </msub>\\n <mo>=</mo>\\n <mn>144.466836</mn>\\n <mi>M</mi>\\n <mi>p</mi>\\n <mi>c</mi>\\n <mo>±</mo>\\n <mn>4.288758</mn>\\n </mrow>\\n <annotation>$r_d = 144.466836 Mpc \\\\pm 4.288758$</annotation>\\n </semantics></math>. Cosmographic analyses for both of the proposed parameterizations in comparison to the ΛCDM paradigm are conducted. Additionally, Diagnostic tests to investigate the evolution of both models is applied. Finally, the Information Criteria test demonstrates that the ΛCDM model emerges as the preferred choice among the models is considered.</p>\",\"PeriodicalId\":55150,\"journal\":{\"name\":\"Fortschritte Der Physik-Progress of Physics\",\"volume\":\"72 2\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fortschritte Der Physik-Progress of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/prop.202300238\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fortschritte Der Physik-Progress of Physics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/prop.202300238","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用霍拉瓦-利夫希茨引力框架来模拟宇宙的暗物质和暗能量(DE)成分。具体来说,我们考虑了两种最新的暗物质和暗能量模型参数化:CBDRM 型和 CADMM 型参数化。在分析中,明确表达了这两种不同暗能量模型的哈勃参数,表示为 H(z)$H(z)$。这样做的目的是研究和量化晚期宇宙的加速宇宙膨胀率。这项研究使用了广泛的数据集。这些数据集包括宇宙时计(CC)数据集在 22 年内收集的重子声振荡(BAOs)的最新测量数据、Ia 型超新星(SNIa)数据集、伽马射线暴(GRBs)的哈勃图、类星体(Q)以及哈勃常数(R22)的最新测量数据。因此,通过绘制 rd$r_{d}$ 与 H0 平面的关系图,展示了这项研究的一个重要方面。在ΛCDM模型的背景下,结合所有数据集,包括R22先验数据,得出以下结果:H0 = 71.674089 ± 0.734089 kms-1Mpc-1$km s^{-1} Mpc^{-1}$,rd=143.050380Mpc±3.702038$r_d=143.050380 Mpc \pm 3.702038$。CBDRM模型的H0=72.355058 ± 1.004604 kms-1Mpc-1$km s^{-1} Mpc^{-1}$,rd=144.835069Mpc±2.378848$r_d=144.835069 Mpc \pm 2.378848$。对于 CADMM 模型,分析得出 H0 = 72.347804 ± 0.923328 kms-1Mpc-1$km s^{-1} Mpc^{-1}$,rd = 144.466836Mpc±4.288758$r_d = 144.466836 Mpc \pm 4.288758$。与 ΛCDM 范式相比,我们对这两种参数化进行了宇宙学分析。此外,还应用了诊断测试来研究两种模型的演化。最后,信息标准检验表明,ΛCDM 模型是各种模型中的首选。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring Late-Time Cosmic Acceleration with Eos Parameterizations in Horava-Lifshitz Gravity via Baryon Acoustic Oscillations

In this study, the framework of Horava-Lifshitz gravity to model the Universe's dark matter and dark energy (DE) components is adopted. Specifically, two recent parametrizations for DE models: the CBDRM-type and CADMM-type parameterizations is considered. In the analysis, the Hubble parameter is explicitly expressed, denoted as H ( z ) $H(z)$ , for these two distinct dark energy models. By doing so, investigate and quantify the accelerated cosmic expansion rate characterizing the late-time Universe is aimed. This study uses a wide range of datasets. This dataset consists of recent measurements of baryon acoustic oscillations (BAOs) collected over a period of 22 years with the Cosmic Chronometers (CC) dataset, Type Ia supernovae (SNIa) dataset, the Hubble diagram of gamma-ray bursts (GRBs), quasars (Q), and the latest measurement of the Hubble constant (R22). Consequently, a crucial aspect of this study by plotting the r d $r_{d}$ vs. H0 plane is presented. In the context of the ΛCDM model, after incorporating all the datasets, including the R22 prior, the following results: H0 = 71.674089 ± 0.734089 k m s 1 M p c 1 $km s^{-1} Mpc^{-1}$ and r d = 143.050380 M p c ± 3.702038 $r_d = 143.050380 Mpc \pm 3.702038$ is obtained. For the CBDRM model, H0 = 72.355058 ± 1.004604 k m s 1 M p c 1 $km s^{-1} Mpc^{-1}$ and r d = 144.835069 M p c ± 2.378848 $r_d = 144.835069 Mpc \pm 2.378848$ is found. In the case of the CADMM model, the analysis yields H0 = 72.347804 ± 0.923328 k m s 1 M p c 1 $km s^{-1} Mpc^{-1}$ and r d = 144.466836 M p c ± 4.288758 $r_d = 144.466836 Mpc \pm 4.288758$ . Cosmographic analyses for both of the proposed parameterizations in comparison to the ΛCDM paradigm are conducted. Additionally, Diagnostic tests to investigate the evolution of both models is applied. Finally, the Information Criteria test demonstrates that the ΛCDM model emerges as the preferred choice among the models is considered.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
7.70%
发文量
75
审稿时长
6-12 weeks
期刊介绍: The journal Fortschritte der Physik - Progress of Physics is a pure online Journal (since 2013). Fortschritte der Physik - Progress of Physics is devoted to the theoretical and experimental studies of fundamental constituents of matter and their interactions e. g. elementary particle physics, classical and quantum field theory, the theory of gravitation and cosmology, quantum information, thermodynamics and statistics, laser physics and nonlinear dynamics, including chaos and quantum chaos. Generally the papers are review articles with a detailed survey on relevant publications, but original papers of general interest are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信