Madhur Khurana, Himanshu Chaudhary, Ujjal Debnath, Alok Sardar, Ghulam Mustafa
{"title":"通过重子声振荡探索霍拉瓦-利夫希茨引力中 Eos 参数化的晚期宇宙加速度","authors":"Madhur Khurana, Himanshu Chaudhary, Ujjal Debnath, Alok Sardar, Ghulam Mustafa","doi":"10.1002/prop.202300238","DOIUrl":null,"url":null,"abstract":"<p>In this study, the framework of Horava-Lifshitz gravity to model the Universe's dark matter and dark energy (DE) components is adopted. Specifically, two recent parametrizations for DE models: the CBDRM-type and CADMM-type parameterizations is considered. In the analysis, the Hubble parameter is explicitly expressed, denoted as <math>\n <semantics>\n <mrow>\n <mi>H</mi>\n <mo>(</mo>\n <mi>z</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$H(z)$</annotation>\n </semantics></math>, for these two distinct dark energy models. By doing so, investigate and quantify the accelerated cosmic expansion rate characterizing the late-time Universe is aimed. This study uses a wide range of datasets. This dataset consists of recent measurements of baryon acoustic oscillations (BAOs) collected over a period of 22 years with the Cosmic Chronometers (CC) dataset, Type Ia supernovae (SNIa) dataset, the Hubble diagram of gamma-ray bursts (GRBs), quasars (Q), and the latest measurement of the Hubble constant (R22). Consequently, a crucial aspect of this study by plotting the <math>\n <semantics>\n <msub>\n <mi>r</mi>\n <mi>d</mi>\n </msub>\n <annotation>$r_{d}$</annotation>\n </semantics></math> vs. <i>H</i><sub>0</sub> plane is presented. In the context of the ΛCDM model, after incorporating all the datasets, including the R22 prior, the following results: <i>H</i><sub>0</sub> = 71.674089 ± 0.734089 <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mi>m</mi>\n <msup>\n <mi>s</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mi>M</mi>\n <mi>p</mi>\n <msup>\n <mi>c</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$km s^{-1} Mpc^{-1}$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n <mi>d</mi>\n </msub>\n <mo>=</mo>\n <mn>143.050380</mn>\n <mi>M</mi>\n <mi>p</mi>\n <mi>c</mi>\n <mo>±</mo>\n <mn>3.702038</mn>\n </mrow>\n <annotation>$r_d = 143.050380 Mpc \\pm 3.702038$</annotation>\n </semantics></math> is obtained. For the CBDRM model, <i>H</i><sub>0</sub> = 72.355058 ± 1.004604 <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mi>m</mi>\n <msup>\n <mi>s</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mi>M</mi>\n <mi>p</mi>\n <msup>\n <mi>c</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$km s^{-1} Mpc^{-1}$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n <mi>d</mi>\n </msub>\n <mo>=</mo>\n <mn>144.835069</mn>\n <mi>M</mi>\n <mi>p</mi>\n <mi>c</mi>\n <mo>±</mo>\n <mn>2.378848</mn>\n </mrow>\n <annotation>$r_d = 144.835069 Mpc \\pm 2.378848$</annotation>\n </semantics></math> is found. In the case of the CADMM model, the analysis yields <i>H</i><sub>0</sub> = 72.347804 ± 0.923328 <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mi>m</mi>\n <msup>\n <mi>s</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mi>M</mi>\n <mi>p</mi>\n <msup>\n <mi>c</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$km s^{-1} Mpc^{-1}$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n <mi>d</mi>\n </msub>\n <mo>=</mo>\n <mn>144.466836</mn>\n <mi>M</mi>\n <mi>p</mi>\n <mi>c</mi>\n <mo>±</mo>\n <mn>4.288758</mn>\n </mrow>\n <annotation>$r_d = 144.466836 Mpc \\pm 4.288758$</annotation>\n </semantics></math>. Cosmographic analyses for both of the proposed parameterizations in comparison to the ΛCDM paradigm are conducted. Additionally, Diagnostic tests to investigate the evolution of both models is applied. Finally, the Information Criteria test demonstrates that the ΛCDM model emerges as the preferred choice among the models is considered.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"72 2","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Late-Time Cosmic Acceleration with Eos Parameterizations in Horava-Lifshitz Gravity via Baryon Acoustic Oscillations\",\"authors\":\"Madhur Khurana, Himanshu Chaudhary, Ujjal Debnath, Alok Sardar, Ghulam Mustafa\",\"doi\":\"10.1002/prop.202300238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, the framework of Horava-Lifshitz gravity to model the Universe's dark matter and dark energy (DE) components is adopted. Specifically, two recent parametrizations for DE models: the CBDRM-type and CADMM-type parameterizations is considered. In the analysis, the Hubble parameter is explicitly expressed, denoted as <math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n <mo>(</mo>\\n <mi>z</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$H(z)$</annotation>\\n </semantics></math>, for these two distinct dark energy models. By doing so, investigate and quantify the accelerated cosmic expansion rate characterizing the late-time Universe is aimed. This study uses a wide range of datasets. This dataset consists of recent measurements of baryon acoustic oscillations (BAOs) collected over a period of 22 years with the Cosmic Chronometers (CC) dataset, Type Ia supernovae (SNIa) dataset, the Hubble diagram of gamma-ray bursts (GRBs), quasars (Q), and the latest measurement of the Hubble constant (R22). Consequently, a crucial aspect of this study by plotting the <math>\\n <semantics>\\n <msub>\\n <mi>r</mi>\\n <mi>d</mi>\\n </msub>\\n <annotation>$r_{d}$</annotation>\\n </semantics></math> vs. <i>H</i><sub>0</sub> plane is presented. In the context of the ΛCDM model, after incorporating all the datasets, including the R22 prior, the following results: <i>H</i><sub>0</sub> = 71.674089 ± 0.734089 <math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mi>m</mi>\\n <msup>\\n <mi>s</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mi>M</mi>\\n <mi>p</mi>\\n <msup>\\n <mi>c</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$km s^{-1} Mpc^{-1}$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>r</mi>\\n <mi>d</mi>\\n </msub>\\n <mo>=</mo>\\n <mn>143.050380</mn>\\n <mi>M</mi>\\n <mi>p</mi>\\n <mi>c</mi>\\n <mo>±</mo>\\n <mn>3.702038</mn>\\n </mrow>\\n <annotation>$r_d = 143.050380 Mpc \\\\pm 3.702038$</annotation>\\n </semantics></math> is obtained. For the CBDRM model, <i>H</i><sub>0</sub> = 72.355058 ± 1.004604 <math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mi>m</mi>\\n <msup>\\n <mi>s</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mi>M</mi>\\n <mi>p</mi>\\n <msup>\\n <mi>c</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$km s^{-1} Mpc^{-1}$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>r</mi>\\n <mi>d</mi>\\n </msub>\\n <mo>=</mo>\\n <mn>144.835069</mn>\\n <mi>M</mi>\\n <mi>p</mi>\\n <mi>c</mi>\\n <mo>±</mo>\\n <mn>2.378848</mn>\\n </mrow>\\n <annotation>$r_d = 144.835069 Mpc \\\\pm 2.378848$</annotation>\\n </semantics></math> is found. In the case of the CADMM model, the analysis yields <i>H</i><sub>0</sub> = 72.347804 ± 0.923328 <math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mi>m</mi>\\n <msup>\\n <mi>s</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mi>M</mi>\\n <mi>p</mi>\\n <msup>\\n <mi>c</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$km s^{-1} Mpc^{-1}$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>r</mi>\\n <mi>d</mi>\\n </msub>\\n <mo>=</mo>\\n <mn>144.466836</mn>\\n <mi>M</mi>\\n <mi>p</mi>\\n <mi>c</mi>\\n <mo>±</mo>\\n <mn>4.288758</mn>\\n </mrow>\\n <annotation>$r_d = 144.466836 Mpc \\\\pm 4.288758$</annotation>\\n </semantics></math>. Cosmographic analyses for both of the proposed parameterizations in comparison to the ΛCDM paradigm are conducted. Additionally, Diagnostic tests to investigate the evolution of both models is applied. Finally, the Information Criteria test demonstrates that the ΛCDM model emerges as the preferred choice among the models is considered.</p>\",\"PeriodicalId\":55150,\"journal\":{\"name\":\"Fortschritte Der Physik-Progress of Physics\",\"volume\":\"72 2\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fortschritte Der Physik-Progress of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/prop.202300238\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fortschritte Der Physik-Progress of Physics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/prop.202300238","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Exploring Late-Time Cosmic Acceleration with Eos Parameterizations in Horava-Lifshitz Gravity via Baryon Acoustic Oscillations
In this study, the framework of Horava-Lifshitz gravity to model the Universe's dark matter and dark energy (DE) components is adopted. Specifically, two recent parametrizations for DE models: the CBDRM-type and CADMM-type parameterizations is considered. In the analysis, the Hubble parameter is explicitly expressed, denoted as , for these two distinct dark energy models. By doing so, investigate and quantify the accelerated cosmic expansion rate characterizing the late-time Universe is aimed. This study uses a wide range of datasets. This dataset consists of recent measurements of baryon acoustic oscillations (BAOs) collected over a period of 22 years with the Cosmic Chronometers (CC) dataset, Type Ia supernovae (SNIa) dataset, the Hubble diagram of gamma-ray bursts (GRBs), quasars (Q), and the latest measurement of the Hubble constant (R22). Consequently, a crucial aspect of this study by plotting the vs. H0 plane is presented. In the context of the ΛCDM model, after incorporating all the datasets, including the R22 prior, the following results: H0 = 71.674089 ± 0.734089 and is obtained. For the CBDRM model, H0 = 72.355058 ± 1.004604 and is found. In the case of the CADMM model, the analysis yields H0 = 72.347804 ± 0.923328 and . Cosmographic analyses for both of the proposed parameterizations in comparison to the ΛCDM paradigm are conducted. Additionally, Diagnostic tests to investigate the evolution of both models is applied. Finally, the Information Criteria test demonstrates that the ΛCDM model emerges as the preferred choice among the models is considered.
期刊介绍:
The journal Fortschritte der Physik - Progress of Physics is a pure online Journal (since 2013).
Fortschritte der Physik - Progress of Physics is devoted to the theoretical and experimental studies of fundamental constituents of matter and their interactions e. g. elementary particle physics, classical and quantum field theory, the theory of gravitation and cosmology, quantum information, thermodynamics and statistics, laser physics and nonlinear dynamics, including chaos and quantum chaos. Generally the papers are review articles with a detailed survey on relevant publications, but original papers of general interest are also published.