Fungal Ecology最新文献

筛选
英文 中文
Root contact dominates vegetative transmission of the Phialocephala fortinii s.l. – Acephala applanata species complex (PAC) 根部接触主导了Phialocephala fortinii s.l. - Acephala applanata物种复合体(PAC)的无性传播
IF 2.9 3区 环境科学与生态学
Fungal Ecology Pub Date : 2024-04-16 DOI: 10.1016/j.funeco.2024.101351
Sophie Stroheker , Vivanne Dubach , Markus Schlegel , Thomas N. Sieber
{"title":"Root contact dominates vegetative transmission of the Phialocephala fortinii s.l. – Acephala applanata species complex (PAC)","authors":"Sophie Stroheker ,&nbsp;Vivanne Dubach ,&nbsp;Markus Schlegel ,&nbsp;Thomas N. Sieber","doi":"10.1016/j.funeco.2024.101351","DOIUrl":"https://doi.org/10.1016/j.funeco.2024.101351","url":null,"abstract":"<div><p>The <em>Phialocephala fortinii</em> s.l. – <em>Acephala applanata</em> species complex (PAC) is composed of closely related endophytic ascomycetes colonizing roots of coniferous trees. Their means of dispersal and teleomorphic form are still unknown. Accordingly, we focused on vegetative mycelial spread of PAC i) via root contacts from PAC-inoculated to PAC-free saplings, ii) through semi-sterile soil from PAC-colonized to PAC-free saplings (without contact) and iii) through semi-sterile soil from PAC-colonized substrate to PAC-free saplings (without contact). Five PAC strains were selected for the experiment. All three modes of PAC transmission found support and were confirmed by metabarcoding. However, transmission via root contact was found to be the most successful. Growth of PAC through soil was also observed whereby transmission from PAC-colonized substrate to PAC-free saplings was more frequent than transmission from PAC-colonized to PAC-free saplings. The transmission rates depended on the PAC strain. Overall, we found support for vegetative transmission of PAC via root contact and active mycelial spread through semi-sterile soil.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"70 ","pages":"Article 101351"},"PeriodicalIF":2.9,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1754504824000229/pdfft?md5=b95479d486b251a64af738323f97101e&pid=1-s2.0-S1754504824000229-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140555434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The composition of soil fungal communities is more dependent on biocrust type than on shrub cover in the Mu Us Desert 在穆乌斯沙漠,土壤真菌群落的组成更多地取决于生物簇类型,而不是灌木覆盖率
IF 2.9 3区 环境科学与生态学
Fungal Ecology Pub Date : 2024-04-08 DOI: 10.1016/j.funeco.2024.101352
Lin Xu , Chaonan Li , Wenjun Xiong , YongPing Kou , Ping Zou , Bingjie Jiao , Minjie Yao , Junming Wang , Bingchang Zhang , Xiangzhen Li
{"title":"The composition of soil fungal communities is more dependent on biocrust type than on shrub cover in the Mu Us Desert","authors":"Lin Xu ,&nbsp;Chaonan Li ,&nbsp;Wenjun Xiong ,&nbsp;YongPing Kou ,&nbsp;Ping Zou ,&nbsp;Bingjie Jiao ,&nbsp;Minjie Yao ,&nbsp;Junming Wang ,&nbsp;Bingchang Zhang ,&nbsp;Xiangzhen Li","doi":"10.1016/j.funeco.2024.101352","DOIUrl":"https://doi.org/10.1016/j.funeco.2024.101352","url":null,"abstract":"<div><p>Desertification-control policies have been applied in the Mu Us Desert since the 1950s. The landscape there is characterized by patches of shrub plants and well-developed lichen and moss crusts, some covered by shrub canopies and some in interspace soils. Little is known about how shrub cover and biocrusts shape soil fungal community structure in this ecosystem. Using high-throughput amplicon sequencing, the effects of biocrust types and shrub cover on soil fungal communities were analyzed. The results showed that biocrust types were more important than shrub cover in affecting soil properties and shaping soil fungal communities. Among all the measured soil properties, significant effects of shrub cover on soil pH and available P were observed. Biocrust types had significant effects on soil total organic carbon, C:N, and C:P ratios. Fungal taxa relating to plant pathogens and formation of lichens, (e.g., the Eurotiomycetes and Dothideomycetes and the of genera <em>Endocarpon</em> and <em>Knufia</em>) were dominant across biocrust types and shrub cover. Furthermore, although relative abundances of dominant fungal taxa were statistically similar among microhabitats, abundances of lichenized and pathogenic fungi differed significantly among biocrust types, with the former showing higher abundances in lichen crusts, and the latter exhibiting higher abundances in moss crosts. Soil total nitrogen and C:N were correlated with fungal community structure. Our results highligh the dominant role of biocrust types over shrub cover in shaping soil fungal communities in the Mu Us Desert. With the succession from lichen to moss crusts, increasing N limitation (soil TOC:TN ratio) may drive higher abundances of pathogenic fungi in lichen crusts and fewer lichenized fungi in moss crusts.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"70 ","pages":"Article 101352"},"PeriodicalIF":2.9,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140536953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determinants of host specificity in ectomycorrhizal fungi: A focus on host and fungal biogeography 外生菌根真菌宿主特异性的决定因素:聚焦寄主和真菌生物地理学
IF 2.9 3区 环境科学与生态学
Fungal Ecology Pub Date : 2024-04-06 DOI: 10.1016/j.funeco.2024.101350
Yoriko Sugiyama , Hirotoshi Sato
{"title":"Determinants of host specificity in ectomycorrhizal fungi: A focus on host and fungal biogeography","authors":"Yoriko Sugiyama ,&nbsp;Hirotoshi Sato","doi":"10.1016/j.funeco.2024.101350","DOIUrl":"https://doi.org/10.1016/j.funeco.2024.101350","url":null,"abstract":"<div><p>Host phylogenetic relatedness is the most widely accepted factor to explain host-fungus compatibility in ectomycorrhizal (ECM) fungi. The biogeographic similarity between host and fungus has been recently proposed as another important factor. However, as phylogenetically related hosts often have similar biogeography, it remains disputable whether host biogeography is an important determinant of host-fungus compatibility. In the present study, we conducted inoculation tests to evaluate the colonization ability of 13 ECM fungal operational taxonomic units (OTUs) which are putatively associated with <em>Quercus serrata</em> (Fagaceae), to three Japanese (<em>Q. serrata</em>, <em>Castanopsis sieblodii</em> [Fagaceae], and <em>Pinus thunbergii</em> [Pinaceae]) and two Australian species (<em>Eucalyptus globulus</em> and <em>E. camaldulensis</em> [Myrtaceae]). The colonization pattern of the inoculated OTUs could be classified into two categories: ECM fungi that associated only with Fagaceae and those associated with Japanese hosts. <em>Eucalyptus</em> was less able to associate with the inoculated fungi than <em>P. thunbergii</em>. Our results support the notion that the biogeographic similarity between fungi and hosts as well as host phylogeny can explain host-fungus compatibility.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"70 ","pages":"Article 101350"},"PeriodicalIF":2.9,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140533715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial community composition unaffected by mycorrhizal plant removal in sub-arctic tundra 微生物群落组成不受亚北极苔原菌根植物移除的影响
IF 2.9 3区 环境科学与生态学
Fungal Ecology Pub Date : 2024-03-11 DOI: 10.1016/j.funeco.2024.101342
Leah Kirchhoff , Konstantin Gavazov , Gesche Blume-Werry , Eveline J. Krab , Signe Lett , Emily Pickering Pedersen , Martina Peter , Stephanie Pfister , Maria Väisänen , Sylvain Monteux
{"title":"Microbial community composition unaffected by mycorrhizal plant removal in sub-arctic tundra","authors":"Leah Kirchhoff ,&nbsp;Konstantin Gavazov ,&nbsp;Gesche Blume-Werry ,&nbsp;Eveline J. Krab ,&nbsp;Signe Lett ,&nbsp;Emily Pickering Pedersen ,&nbsp;Martina Peter ,&nbsp;Stephanie Pfister ,&nbsp;Maria Väisänen ,&nbsp;Sylvain Monteux","doi":"10.1016/j.funeco.2024.101342","DOIUrl":"https://doi.org/10.1016/j.funeco.2024.101342","url":null,"abstract":"<div><p>Vegetation changes in a warming Arctic may affect plant-associated soil microbial communities with possible consequences for the biogeochemical cycling of carbon (C) and nitrogen (N). In a sub-arctic tundra heath, we factorially removed plant species with ecto- and ericoid mycorrhizal associations. After two years, we explored how mycorrhizal type-specific plant removal influences microbial communities, soil and microbial C and N pools, and extracellular enzymatic activities. Removal of ecto- and ericoid mycorrhizal plants did not change the soil fungal or bacterial community composition or their extracellular enzyme activities. However, ericoid plant removal decreased microbial C:N ratio, suggesting a stoichiometric effect decoupled from microbial community composition. In other words, microbial communities appear to show initial plasticity in response to major changes in tundra vegetation. This highlights the importance of longer-term perspectives when investigating the effects of vegetation changes on biogeochemical processes in Arctic ecosystems.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"69 ","pages":"Article 101342"},"PeriodicalIF":2.9,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1754504824000138/pdfft?md5=f669b4b42508486194f363735e447f78&pid=1-s2.0-S1754504824000138-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140095904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role and fate of patulin in apple-associated fungal-fungal interactions 棒曲霉素在苹果相关真菌-真菌相互作用中的作用和命运
IF 2.9 3区 环境科学与生态学
Fungal Ecology Pub Date : 2024-03-09 DOI: 10.1016/j.funeco.2024.101341
Sidsel Ettrup Clemmensen , Michael Scott Cowled , Kresten Jon Korup Kromphardt , Jens Christian Frisvad , Thomas Ostenfeld Larsen , Rasmus John Normand Frandsen
{"title":"The role and fate of patulin in apple-associated fungal-fungal interactions","authors":"Sidsel Ettrup Clemmensen ,&nbsp;Michael Scott Cowled ,&nbsp;Kresten Jon Korup Kromphardt ,&nbsp;Jens Christian Frisvad ,&nbsp;Thomas Ostenfeld Larsen ,&nbsp;Rasmus John Normand Frandsen","doi":"10.1016/j.funeco.2024.101341","DOIUrl":"https://doi.org/10.1016/j.funeco.2024.101341","url":null,"abstract":"<div><p>Fungal secondary metabolites (SMs) have attracted significant attention due to their pharmaceutical applications and negative impact as food contaminants. However, less attention has been paid to understanding the ecological role of SMs for the producer and their natural microbial community. To investigate this, we performed co-cultures of SM deficient mutant strains and wild type fungi isolated from mouldy windfall apples. The competitiveness of <em>Penicillium expansum</em> mutant strains was tested in co-cultures with <em>Monilinia fructigena</em> on apple puree agar. Remarkably, the absence of patulin production in <em>P. expansum</em> lead to a loss of antagonism against <em>M. fructigena</em>, revealing a nuanced ecological role that extends beyond the involvement of patulin in host pathogenicity. Furthermore, chemical analysis revealed biotransformation of patulin by <em>M. fructigena</em>, pointing to a more complex interplay mediated by SMs for fungal species inhabiting the same ecosystem.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"69 ","pages":"Article 101341"},"PeriodicalIF":2.9,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1754504824000126/pdfft?md5=3ba4aa5474da7645357664690678516d&pid=1-s2.0-S1754504824000126-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140066630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly heterogeneous mycobiota shape fungal diversity in two globally distributed lichens 高度异质性的真菌生物群形成了两种全球分布地衣中的真菌多样性
IF 2.9 3区 环境科学与生态学
Fungal Ecology Pub Date : 2024-03-06 DOI: 10.1016/j.funeco.2024.101331
Agnese Cometto , Claudio G. Ametrano , Roberto De Carolis , Steven D. Leavitt , Martin Grube , Alberto Pallavicini , Lucia Muggia
{"title":"Highly heterogeneous mycobiota shape fungal diversity in two globally distributed lichens","authors":"Agnese Cometto ,&nbsp;Claudio G. Ametrano ,&nbsp;Roberto De Carolis ,&nbsp;Steven D. Leavitt ,&nbsp;Martin Grube ,&nbsp;Alberto Pallavicini ,&nbsp;Lucia Muggia","doi":"10.1016/j.funeco.2024.101331","DOIUrl":"https://doi.org/10.1016/j.funeco.2024.101331","url":null,"abstract":"<div><p>Lichens are multi-kingdom symbioses in which fungi, algae and bacteria interact to develop a stable selection unit. In addition to the mycobiont forming the symbiosis, fungal communities associated with lichens represent the lichen mycobiota. Because lichen mycobiota diversity is still largely unknown, we aimed to characterize it in two cosmopolitan lichens, <em>Rhizoplaca melanophthalma</em> and <em>Tephromela atra</em>. The mycobiota were investigated across a broad distribution using both a culture-dependent approach and environmental DNA metabarcoding. The variation of the mycobiota associated with the two lichen species was extremely high, and a stable species-specific core mycobiota was not detected with the methods we applied. Most taxa were present in a low fraction of the samples, and no fungus was ubiquitously present in either lichen species. The mycobiota are thus composed of heterogeneous fungi, and some taxa are detectable only by culture-dependent approaches. We suspect that lichens act as niches in which these fungi may exploit thallus resources and only a few may establish more stable trophic relationships with the major symbiotic partners.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"69 ","pages":"Article 101331"},"PeriodicalIF":2.9,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1754504824000023/pdfft?md5=903c3464a9447820e18ab28fa85768d6&pid=1-s2.0-S1754504824000023-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140041577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chinese caterpillar fungus range shifts in response to climate change based on the interspecific relationships on the Qinghai-Tibet Plateau 基于青藏高原种间关系的中国毛虫真菌随气候变化的分布变化
IF 2.9 3区 环境科学与生态学
Fungal Ecology Pub Date : 2024-02-26 DOI: 10.1016/j.funeco.2024.101330
Jian Chen , Chang-kui Wu , Feng Yuan , Yong-dong Dai , Dong Wang , Tao Sun , Yuan-bing Wang , Zhu-liang Yang , Hong Yu
{"title":"Chinese caterpillar fungus range shifts in response to climate change based on the interspecific relationships on the Qinghai-Tibet Plateau","authors":"Jian Chen ,&nbsp;Chang-kui Wu ,&nbsp;Feng Yuan ,&nbsp;Yong-dong Dai ,&nbsp;Dong Wang ,&nbsp;Tao Sun ,&nbsp;Yuan-bing Wang ,&nbsp;Zhu-liang Yang ,&nbsp;Hong Yu","doi":"10.1016/j.funeco.2024.101330","DOIUrl":"https://doi.org/10.1016/j.funeco.2024.101330","url":null,"abstract":"<div><p>The Chinese caterpillar fungus (CCF, <em>Ophiocordyceps sinensis</em>) is a valuable biological resource found on the Qinghai-Tibet Plateau. The distribution pattern of the CCF and its host insects (<em>Hepialus</em> spp.) and insects’ host plants in response to climate change based on interspecific relationships remains unclear. In this study, we used a MaxEnt model to explore this issue under four climate scenarios. The results showed that the CCF, <em>Hepialus</em> spp., and the high redundancy area of host plants all shared strong similarities in terms of distribution pattern, revealing that the distributions of both the CCF and its host insects depended on high redundancy of host plants. From the Middle Holocene to present and then to 2050, the distribution area suitable for the CCF continues to move and expand to the northwest and to higher elevations. Our models suggest that climate change may contribute to the expansion of the CCF habitat and slow the rapid decrease in the CCF yield resulting from intensive harvesting over recent decades.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"69 ","pages":"Article 101330"},"PeriodicalIF":2.9,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139985564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Does long-term grazing cause cascading impacts on the soil microbiome in mountain birch forests? 长期放牧是否会对高山桦树林的土壤微生物群造成连锁影响?
IF 2.9 3区 环境科学与生态学
Fungal Ecology Pub Date : 2024-02-01 DOI: 10.1016/j.funeco.2024.101332
Saija H.K. Ahonen , Anna Liisa Ruotsalainen , Piippa R. Wäli , Otso Suominen , Ole Petter L. Vindstad , Jane Uhd Jepsen , Annamari Markkola
{"title":"Does long-term grazing cause cascading impacts on the soil microbiome in mountain birch forests?","authors":"Saija H.K. Ahonen ,&nbsp;Anna Liisa Ruotsalainen ,&nbsp;Piippa R. Wäli ,&nbsp;Otso Suominen ,&nbsp;Ole Petter L. Vindstad ,&nbsp;Jane Uhd Jepsen ,&nbsp;Annamari Markkola","doi":"10.1016/j.funeco.2024.101332","DOIUrl":"10.1016/j.funeco.2024.101332","url":null,"abstract":"<div><p>In subarctic mountain birch forests, reindeer grazing and moth outbreaks act as important biotic drivers of ecosystem functioning. We investigated how a long-term contrast in reindeer grazing regimes and short-term ungulate exclusion affected soil fungal and bacterial communities in mountain birch forests recovering from a recent moth outbreak. We separately described the impacts on microbial communities for organic and mineral soil layers. Differences in fungal communities were mainly explained by variations between grazing regimes, whereas the four-year exclusion of ungulates had little effect. Soil microbial communities showed a high level of specificity between organic and mineral layers. Our results suggest that long-term grazing may have cascading impacts, especially on ectomycorrhizal fungal communities. In contrast, ericoid mycorrhizal and saprotrophic fungal communities and soil bacterial communities were less affected by grazing and appeared to be more resilient to aboveground herbivory in mountain birch forests recovering from a moth outbreak.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"69 ","pages":"Article 101332"},"PeriodicalIF":2.9,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1754504824000035/pdfft?md5=edbadc24b88b7144dff5c4f648a81583&pid=1-s2.0-S1754504824000035-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139669032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fungal endophytes of the invasive grass Eragrostis lehmanniana shift metabolic expression in response to native and invasive grasses 入侵草Eragrostis lehmanniana的真菌内生菌随本地草和入侵草的变化而改变新陈代谢的表达方式
IF 2.9 3区 环境科学与生态学
Fungal Ecology Pub Date : 2024-01-18 DOI: 10.1016/j.funeco.2023.101327
Taylor A. Portman , A. Elizabeth Arnold , Robin G. Bradley , Jeffrey S. Fehmi , Craig Rasmussen , Malak M. Tfaily
{"title":"Fungal endophytes of the invasive grass Eragrostis lehmanniana shift metabolic expression in response to native and invasive grasses","authors":"Taylor A. Portman ,&nbsp;A. Elizabeth Arnold ,&nbsp;Robin G. Bradley ,&nbsp;Jeffrey S. Fehmi ,&nbsp;Craig Rasmussen ,&nbsp;Malak M. Tfaily","doi":"10.1016/j.funeco.2023.101327","DOIUrl":"https://doi.org/10.1016/j.funeco.2023.101327","url":null,"abstract":"<div><p><span>Plant-fungal interactions shape ecosystem dynamics and are increasingly recognized as important in the success of invasive plants. Although diverse fungal endophytes are known to inhabit plants, including grasses, the precise chemical mechanisms through which they influence their hosts remain inadequately understood. We used untargeted metabolomics to characterize substrate use and compound production of three fungal endophytes isolated from an invasive grass, </span><span><em>Eragrostis</em><em> lehmanniana,</em></span><span> characterizing the metabolome<span> of these fungal isolates grown alone (axenically) and in the presence of seeds from invasive </span></span><em>E. lehmanniana</em> and co-occurring native grasses (<em>E. intermedia, Bouteloua curtipendula,</em> and <em>Leptochloa dubia</em>). We found that each fungal isolate expressed a different metabolic profile in response to <em>Eragrostis</em> seeds, relative to seeds of non-<em>Eragrostis</em><span> native grasses. Coupled with results of germination trials, these findings suggest that plant-fungal interactions mediated by the fungal metabolome may play a key role in determining the success of a major invasive species.</span></p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"68 ","pages":"Article 101327"},"PeriodicalIF":2.9,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139487996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temperature sensitivity of soil-borne fungal phytopathogens depends on niche breadth and land use types 土传真菌植物病原体对温度的敏感性取决于生态位广度和土地利用类型
IF 2.9 3区 环境科学与生态学
Fungal Ecology Pub Date : 2024-01-13 DOI: 10.1016/j.funeco.2023.101329
Bangguo Yan , Yi Sun , Guangxiong He , Xuemei Wang , Lin Li , Xuewen Yue , Liangtao Shi , Haidong Fang
{"title":"Temperature sensitivity of soil-borne fungal phytopathogens depends on niche breadth and land use types","authors":"Bangguo Yan ,&nbsp;Yi Sun ,&nbsp;Guangxiong He ,&nbsp;Xuemei Wang ,&nbsp;Lin Li ,&nbsp;Xuewen Yue ,&nbsp;Liangtao Shi ,&nbsp;Haidong Fang","doi":"10.1016/j.funeco.2023.101329","DOIUrl":"https://doi.org/10.1016/j.funeco.2023.101329","url":null,"abstract":"<div><p>Soil-borne fungal plant pathogens pose great threats to agricultural productivity and native ecosystems. However, the roles of niche breadth and land-use types in regulating the response of soil-borne fungal plant pathogens to temperature changes largely remain unclear. Here, we surveyed soil pathogens from different valleys where croplands, grasslands, and woodlands scattered in mosaic patterns. We found that pathogen richness increased with increasing temperature in grasslands but not in croplands and woodlands. After classifying the pathogens based on temperature niche, we found that the richness of specialists was sensitive to temperature changes and increased with increasing temperature in grasslands and croplands. By contrast, the richness of neutrals (those taxa not defined as generalists or specialists) did not change with temperature gradients regardless of land-use types. Additionally, pathogens were more abundant and diverse in croplands than those in grasslands and woodlands, and this pattern persisted across the temperature gradient. Our results provide evidence that temperature change and land use types could additively affect the diversity of plant pathogens in soils. This work advances our understanding of how niche breadth affects the response of pathogens to temperature, highlighting the importance of climate change and land use in regulating the abundance and diversity of pathogens.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"68 ","pages":"Article 101329"},"PeriodicalIF":2.9,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139436302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信