Fungal Ecology最新文献

筛选
英文 中文
Factors affecting the foliar endophyte community in the invasive weed, Impatiens glandulifera 影响入侵杂草无患子叶片内生菌群落的因素
IF 2.9 3区 环境科学与生态学
Fungal Ecology Pub Date : 2024-05-07 DOI: 10.1016/j.funeco.2024.101356
Nadia Ab Razak , Alan C. Gange , Amanda F. Currie , Brian C. Sutton , Asyraf Mansor
{"title":"Factors affecting the foliar endophyte community in the invasive weed, Impatiens glandulifera","authors":"Nadia Ab Razak ,&nbsp;Alan C. Gange ,&nbsp;Amanda F. Currie ,&nbsp;Brian C. Sutton ,&nbsp;Asyraf Mansor","doi":"10.1016/j.funeco.2024.101356","DOIUrl":"https://doi.org/10.1016/j.funeco.2024.101356","url":null,"abstract":"<div><p>All vascular plants contain communities of endophyte fungi within their foliar tissues. These fungi can act as plant bodyguards and disrupt the efficacy of weed biological control agents, yet studies of invasive plant biology hardly ever consider the background endophyte communities. Here, we investigated the factors that affect the structure of cultivable endophyte communities in the highly invasive weed <em>Impatiens glandulifera</em>. We found that community composition varies according to location, but that seasonal accumulation patterns of endophytes are similar between sites. Biotic factors influencing endophytes include arbuscular mycorrhizal fungi, insect herbivores and plant pathogens. Endophyte species richness per plant was consistently low compared with other herbaceous plants and communities appear to be a random sub-set of the available species pool, with the plant acting as a strong filter of species. This information should enable community structure to be modelled and manipulated, making biological control of this weed more effective.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"70 ","pages":"Article 101356"},"PeriodicalIF":2.9,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140878576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of plant species identity and island characteristics on phyllosphere fungal community structure in an island ecosystem 植物物种特征和岛屿特征对岛屿生态系统植被真菌群落结构的影响
IF 2.9 3区 环境科学与生态学
Fungal Ecology Pub Date : 2024-05-07 DOI: 10.1016/j.funeco.2024.101357
Taotao Wei , Hongyue Cai , Xiandong Zhang , Juanjuan Yang , Zenan Huang , Shujing Sun , Tingting Duan , Miaomiao Shi , Tieyao Tu , Xin Qian
{"title":"Impact of plant species identity and island characteristics on phyllosphere fungal community structure in an island ecosystem","authors":"Taotao Wei ,&nbsp;Hongyue Cai ,&nbsp;Xiandong Zhang ,&nbsp;Juanjuan Yang ,&nbsp;Zenan Huang ,&nbsp;Shujing Sun ,&nbsp;Tingting Duan ,&nbsp;Miaomiao Shi ,&nbsp;Tieyao Tu ,&nbsp;Xin Qian","doi":"10.1016/j.funeco.2024.101357","DOIUrl":"https://doi.org/10.1016/j.funeco.2024.101357","url":null,"abstract":"<div><p>Phyllosphere fungi exhibit a wide range of species and play a pivotal role in island ecosystem biodiversity. They bolster plant resilience against diseases and environmental stresses, facilitate the decomposition of organic materials, and enhance nutrient exchange between plants and their surroundings. Despite extensive research on island biogeography pertaining to flora and fauna, the assembly of phyllosphere fungal communities has not been thoroughly explored. This study addresses this gap by employing high-throughput sequencing to examine phyllosphere fungi associated with three island plant species (<em>Messerschmidia argentea</em>, <em>Morinda citrifolia</em>, and <em>Suriana maritima</em>) across 13 islands in the Xisha Islands region. Our findings reveal significant variances in fungal α-diversity and community composition across different islands, plant species, and functional guilds. The variation in fungal α-diversity was notably correlated with the geographical distance from the mainland and a satellite-derived vegetation index, while the Bray-Curtis similarity in fungal communities was primarily influenced by the geographical distance between islands. Stochastic elements, particularly dispersal limitation and drift, were identified as major drivers of fungal community assembly. Furthermore, we observed that island size impacts the distribution of potential keystone species and their co-occurrence patterns within the fungal groups. Intriguingly, host vegetation was found to exert a stronger selective influence on phyllosphere fungi than island characteristics. These results provide valuable insights into the complex ecological interactions and processes governing fungal communities in isolated and unique environmental settings.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"70 ","pages":"Article 101357"},"PeriodicalIF":2.9,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140878577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endophytic entomopathogenic fungi isolates as growth promoters of the grass Urochloa brizantha 内生昆虫病原真菌分离物作为禾本科植物 Urochloa brizantha 的生长促进剂
IF 2.9 3区 环境科学与生态学
Fungal Ecology Pub Date : 2024-05-03 DOI: 10.1016/j.funeco.2024.101355
Dylan Thomas Telles Amandio , Cristiano Nunes Nesi , Alex Sandro Poltronieri , Leandro do Prado Ribeiro
{"title":"Endophytic entomopathogenic fungi isolates as growth promoters of the grass Urochloa brizantha","authors":"Dylan Thomas Telles Amandio ,&nbsp;Cristiano Nunes Nesi ,&nbsp;Alex Sandro Poltronieri ,&nbsp;Leandro do Prado Ribeiro","doi":"10.1016/j.funeco.2024.101355","DOIUrl":"https://doi.org/10.1016/j.funeco.2024.101355","url":null,"abstract":"<div><p>This study evaluated the growth-promoting action of 16 isolates of the entomopathogenic fungal genus <em>Metarhizium</em> spp., representing 14 from the native pastures and two commercial isolates, on the forage grass <em>Urochloa brizantha</em>, via drench application to seeds. Multivariate analysis of plant height, length of the longest leaf and root, and dry and fresh weight of leaves and roots indicated the most promising isolates, five from native pastures (CEPAF_ENT25, CEPAF_ENT26, CEPAF_ENT27, CEPAF_ENT42, and CEPAF_ENT59) and one commercial (IBCB 425), all isolates of <em>Metarhizium anisopliae</em>. Except for isolate CEPAF_ENT59, there was a positive correlation between growth parameters of <em>U. brizantha</em> with the contents of chlorophyll <em>a</em> and <em>b</em> and carotenoids and with the contents of N, P, and Zn in the leaves. Endophytic colonization tests indicated the presence of <em>Metarhizium</em> spp. in all plant parts, most frequently in the stems. Furthermore, the selected isolates of <em>Metarhizium</em> spp. were recovered from the cultivation substrate and positively affected the germination and initial growth of <em>U. brizantha</em>. Thus, the most promising isolates have potential for application to seeds of <em>U. brizantha</em>.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"70 ","pages":"Article 101355"},"PeriodicalIF":2.9,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140822535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of hurricane disturbance on mycorrhizal co-occurrence networks: Resilience and community dynamics in the Neotropics 飓风干扰对菌根共生网络的影响:新热带地区的复原力和群落动态
IF 2.9 3区 环境科学与生态学
Fungal Ecology Pub Date : 2024-05-02 DOI: 10.1016/j.funeco.2024.101354
Julieta Alvarez-Manjarrez , Mohammad Bahram , Sergei Põlme , Roberto Garibay-Orijel
{"title":"Impact of hurricane disturbance on mycorrhizal co-occurrence networks: Resilience and community dynamics in the Neotropics","authors":"Julieta Alvarez-Manjarrez ,&nbsp;Mohammad Bahram ,&nbsp;Sergei Põlme ,&nbsp;Roberto Garibay-Orijel","doi":"10.1016/j.funeco.2024.101354","DOIUrl":"https://doi.org/10.1016/j.funeco.2024.101354","url":null,"abstract":"<div><p>Extreme climatic events and related disturbances such as hurricanes are increasingly altering forest ecosystems. How these events impact forest fungal communities is poorly characterized. We examined the effect of a hurricane on mycorrhizal community structure and potential interspecific fungal interactions, inferred from OTU co-occurrences. We characterized the root fungal communities of dual-mycorrhizal plants from nine plots during two consecutive years after a category four hurricane impacted the coastal Mexican Pacific tropical forest in Jalisco. Presence-abundance matrices were used to calculate properties of mycorrhizal networks including nestedness and modularity, and to infer patterns of co-occurrence. One year after the hurricane there was a loss of links between plants and fungi. Increased network modularity and connectivity were observed after two years. We also found that disturbance changed arbuscular mycorrhizal fungal network structure more strongly than ectomycorrhizal fungal networks. Fungal guilds changed their putative interspecific interactions, from mutual exclusion in the first year to a significant increase in co-occurrence of plant pathogens, saprotrophs, and endophytes in the second year. Our results suggest that in the short term, rhizospheric interactions can be resilient to hurricanes, but fungal guilds may have divergent responses.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"70 ","pages":"Article 101354"},"PeriodicalIF":2.9,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1754504824000254/pdfft?md5=5a3561efb1e7e07eceaad63bb28588bd&pid=1-s2.0-S1754504824000254-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140822534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Root contact dominates vegetative transmission of the Phialocephala fortinii s.l. – Acephala applanata species complex (PAC) 根部接触主导了Phialocephala fortinii s.l. - Acephala applanata物种复合体(PAC)的无性传播
IF 2.9 3区 环境科学与生态学
Fungal Ecology Pub Date : 2024-04-16 DOI: 10.1016/j.funeco.2024.101351
Sophie Stroheker , Vivanne Dubach , Markus Schlegel , Thomas N. Sieber
{"title":"Root contact dominates vegetative transmission of the Phialocephala fortinii s.l. – Acephala applanata species complex (PAC)","authors":"Sophie Stroheker ,&nbsp;Vivanne Dubach ,&nbsp;Markus Schlegel ,&nbsp;Thomas N. Sieber","doi":"10.1016/j.funeco.2024.101351","DOIUrl":"https://doi.org/10.1016/j.funeco.2024.101351","url":null,"abstract":"<div><p>The <em>Phialocephala fortinii</em> s.l. – <em>Acephala applanata</em> species complex (PAC) is composed of closely related endophytic ascomycetes colonizing roots of coniferous trees. Their means of dispersal and teleomorphic form are still unknown. Accordingly, we focused on vegetative mycelial spread of PAC i) via root contacts from PAC-inoculated to PAC-free saplings, ii) through semi-sterile soil from PAC-colonized to PAC-free saplings (without contact) and iii) through semi-sterile soil from PAC-colonized substrate to PAC-free saplings (without contact). Five PAC strains were selected for the experiment. All three modes of PAC transmission found support and were confirmed by metabarcoding. However, transmission via root contact was found to be the most successful. Growth of PAC through soil was also observed whereby transmission from PAC-colonized substrate to PAC-free saplings was more frequent than transmission from PAC-colonized to PAC-free saplings. The transmission rates depended on the PAC strain. Overall, we found support for vegetative transmission of PAC via root contact and active mycelial spread through semi-sterile soil.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"70 ","pages":"Article 101351"},"PeriodicalIF":2.9,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1754504824000229/pdfft?md5=b95479d486b251a64af738323f97101e&pid=1-s2.0-S1754504824000229-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140555434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The composition of soil fungal communities is more dependent on biocrust type than on shrub cover in the Mu Us Desert 在穆乌斯沙漠,土壤真菌群落的组成更多地取决于生物簇类型,而不是灌木覆盖率
IF 2.9 3区 环境科学与生态学
Fungal Ecology Pub Date : 2024-04-08 DOI: 10.1016/j.funeco.2024.101352
Lin Xu , Chaonan Li , Wenjun Xiong , YongPing Kou , Ping Zou , Bingjie Jiao , Minjie Yao , Junming Wang , Bingchang Zhang , Xiangzhen Li
{"title":"The composition of soil fungal communities is more dependent on biocrust type than on shrub cover in the Mu Us Desert","authors":"Lin Xu ,&nbsp;Chaonan Li ,&nbsp;Wenjun Xiong ,&nbsp;YongPing Kou ,&nbsp;Ping Zou ,&nbsp;Bingjie Jiao ,&nbsp;Minjie Yao ,&nbsp;Junming Wang ,&nbsp;Bingchang Zhang ,&nbsp;Xiangzhen Li","doi":"10.1016/j.funeco.2024.101352","DOIUrl":"https://doi.org/10.1016/j.funeco.2024.101352","url":null,"abstract":"<div><p>Desertification-control policies have been applied in the Mu Us Desert since the 1950s. The landscape there is characterized by patches of shrub plants and well-developed lichen and moss crusts, some covered by shrub canopies and some in interspace soils. Little is known about how shrub cover and biocrusts shape soil fungal community structure in this ecosystem. Using high-throughput amplicon sequencing, the effects of biocrust types and shrub cover on soil fungal communities were analyzed. The results showed that biocrust types were more important than shrub cover in affecting soil properties and shaping soil fungal communities. Among all the measured soil properties, significant effects of shrub cover on soil pH and available P were observed. Biocrust types had significant effects on soil total organic carbon, C:N, and C:P ratios. Fungal taxa relating to plant pathogens and formation of lichens, (e.g., the Eurotiomycetes and Dothideomycetes and the of genera <em>Endocarpon</em> and <em>Knufia</em>) were dominant across biocrust types and shrub cover. Furthermore, although relative abundances of dominant fungal taxa were statistically similar among microhabitats, abundances of lichenized and pathogenic fungi differed significantly among biocrust types, with the former showing higher abundances in lichen crusts, and the latter exhibiting higher abundances in moss crosts. Soil total nitrogen and C:N were correlated with fungal community structure. Our results highligh the dominant role of biocrust types over shrub cover in shaping soil fungal communities in the Mu Us Desert. With the succession from lichen to moss crusts, increasing N limitation (soil TOC:TN ratio) may drive higher abundances of pathogenic fungi in lichen crusts and fewer lichenized fungi in moss crusts.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"70 ","pages":"Article 101352"},"PeriodicalIF":2.9,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140536953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determinants of host specificity in ectomycorrhizal fungi: A focus on host and fungal biogeography 外生菌根真菌宿主特异性的决定因素:聚焦寄主和真菌生物地理学
IF 2.9 3区 环境科学与生态学
Fungal Ecology Pub Date : 2024-04-06 DOI: 10.1016/j.funeco.2024.101350
Yoriko Sugiyama , Hirotoshi Sato
{"title":"Determinants of host specificity in ectomycorrhizal fungi: A focus on host and fungal biogeography","authors":"Yoriko Sugiyama ,&nbsp;Hirotoshi Sato","doi":"10.1016/j.funeco.2024.101350","DOIUrl":"https://doi.org/10.1016/j.funeco.2024.101350","url":null,"abstract":"<div><p>Host phylogenetic relatedness is the most widely accepted factor to explain host-fungus compatibility in ectomycorrhizal (ECM) fungi. The biogeographic similarity between host and fungus has been recently proposed as another important factor. However, as phylogenetically related hosts often have similar biogeography, it remains disputable whether host biogeography is an important determinant of host-fungus compatibility. In the present study, we conducted inoculation tests to evaluate the colonization ability of 13 ECM fungal operational taxonomic units (OTUs) which are putatively associated with <em>Quercus serrata</em> (Fagaceae), to three Japanese (<em>Q. serrata</em>, <em>Castanopsis sieblodii</em> [Fagaceae], and <em>Pinus thunbergii</em> [Pinaceae]) and two Australian species (<em>Eucalyptus globulus</em> and <em>E. camaldulensis</em> [Myrtaceae]). The colonization pattern of the inoculated OTUs could be classified into two categories: ECM fungi that associated only with Fagaceae and those associated with Japanese hosts. <em>Eucalyptus</em> was less able to associate with the inoculated fungi than <em>P. thunbergii</em>. Our results support the notion that the biogeographic similarity between fungi and hosts as well as host phylogeny can explain host-fungus compatibility.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"70 ","pages":"Article 101350"},"PeriodicalIF":2.9,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140533715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial community composition unaffected by mycorrhizal plant removal in sub-arctic tundra 微生物群落组成不受亚北极苔原菌根植物移除的影响
IF 2.9 3区 环境科学与生态学
Fungal Ecology Pub Date : 2024-03-11 DOI: 10.1016/j.funeco.2024.101342
Leah Kirchhoff , Konstantin Gavazov , Gesche Blume-Werry , Eveline J. Krab , Signe Lett , Emily Pickering Pedersen , Martina Peter , Stephanie Pfister , Maria Väisänen , Sylvain Monteux
{"title":"Microbial community composition unaffected by mycorrhizal plant removal in sub-arctic tundra","authors":"Leah Kirchhoff ,&nbsp;Konstantin Gavazov ,&nbsp;Gesche Blume-Werry ,&nbsp;Eveline J. Krab ,&nbsp;Signe Lett ,&nbsp;Emily Pickering Pedersen ,&nbsp;Martina Peter ,&nbsp;Stephanie Pfister ,&nbsp;Maria Väisänen ,&nbsp;Sylvain Monteux","doi":"10.1016/j.funeco.2024.101342","DOIUrl":"https://doi.org/10.1016/j.funeco.2024.101342","url":null,"abstract":"<div><p>Vegetation changes in a warming Arctic may affect plant-associated soil microbial communities with possible consequences for the biogeochemical cycling of carbon (C) and nitrogen (N). In a sub-arctic tundra heath, we factorially removed plant species with ecto- and ericoid mycorrhizal associations. After two years, we explored how mycorrhizal type-specific plant removal influences microbial communities, soil and microbial C and N pools, and extracellular enzymatic activities. Removal of ecto- and ericoid mycorrhizal plants did not change the soil fungal or bacterial community composition or their extracellular enzyme activities. However, ericoid plant removal decreased microbial C:N ratio, suggesting a stoichiometric effect decoupled from microbial community composition. In other words, microbial communities appear to show initial plasticity in response to major changes in tundra vegetation. This highlights the importance of longer-term perspectives when investigating the effects of vegetation changes on biogeochemical processes in Arctic ecosystems.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"69 ","pages":"Article 101342"},"PeriodicalIF":2.9,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1754504824000138/pdfft?md5=f669b4b42508486194f363735e447f78&pid=1-s2.0-S1754504824000138-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140095904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role and fate of patulin in apple-associated fungal-fungal interactions 棒曲霉素在苹果相关真菌-真菌相互作用中的作用和命运
IF 2.9 3区 环境科学与生态学
Fungal Ecology Pub Date : 2024-03-09 DOI: 10.1016/j.funeco.2024.101341
Sidsel Ettrup Clemmensen , Michael Scott Cowled , Kresten Jon Korup Kromphardt , Jens Christian Frisvad , Thomas Ostenfeld Larsen , Rasmus John Normand Frandsen
{"title":"The role and fate of patulin in apple-associated fungal-fungal interactions","authors":"Sidsel Ettrup Clemmensen ,&nbsp;Michael Scott Cowled ,&nbsp;Kresten Jon Korup Kromphardt ,&nbsp;Jens Christian Frisvad ,&nbsp;Thomas Ostenfeld Larsen ,&nbsp;Rasmus John Normand Frandsen","doi":"10.1016/j.funeco.2024.101341","DOIUrl":"https://doi.org/10.1016/j.funeco.2024.101341","url":null,"abstract":"<div><p>Fungal secondary metabolites (SMs) have attracted significant attention due to their pharmaceutical applications and negative impact as food contaminants. However, less attention has been paid to understanding the ecological role of SMs for the producer and their natural microbial community. To investigate this, we performed co-cultures of SM deficient mutant strains and wild type fungi isolated from mouldy windfall apples. The competitiveness of <em>Penicillium expansum</em> mutant strains was tested in co-cultures with <em>Monilinia fructigena</em> on apple puree agar. Remarkably, the absence of patulin production in <em>P. expansum</em> lead to a loss of antagonism against <em>M. fructigena</em>, revealing a nuanced ecological role that extends beyond the involvement of patulin in host pathogenicity. Furthermore, chemical analysis revealed biotransformation of patulin by <em>M. fructigena</em>, pointing to a more complex interplay mediated by SMs for fungal species inhabiting the same ecosystem.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"69 ","pages":"Article 101341"},"PeriodicalIF":2.9,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1754504824000126/pdfft?md5=3ba4aa5474da7645357664690678516d&pid=1-s2.0-S1754504824000126-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140066630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly heterogeneous mycobiota shape fungal diversity in two globally distributed lichens 高度异质性的真菌生物群形成了两种全球分布地衣中的真菌多样性
IF 2.9 3区 环境科学与生态学
Fungal Ecology Pub Date : 2024-03-06 DOI: 10.1016/j.funeco.2024.101331
Agnese Cometto , Claudio G. Ametrano , Roberto De Carolis , Steven D. Leavitt , Martin Grube , Alberto Pallavicini , Lucia Muggia
{"title":"Highly heterogeneous mycobiota shape fungal diversity in two globally distributed lichens","authors":"Agnese Cometto ,&nbsp;Claudio G. Ametrano ,&nbsp;Roberto De Carolis ,&nbsp;Steven D. Leavitt ,&nbsp;Martin Grube ,&nbsp;Alberto Pallavicini ,&nbsp;Lucia Muggia","doi":"10.1016/j.funeco.2024.101331","DOIUrl":"https://doi.org/10.1016/j.funeco.2024.101331","url":null,"abstract":"<div><p>Lichens are multi-kingdom symbioses in which fungi, algae and bacteria interact to develop a stable selection unit. In addition to the mycobiont forming the symbiosis, fungal communities associated with lichens represent the lichen mycobiota. Because lichen mycobiota diversity is still largely unknown, we aimed to characterize it in two cosmopolitan lichens, <em>Rhizoplaca melanophthalma</em> and <em>Tephromela atra</em>. The mycobiota were investigated across a broad distribution using both a culture-dependent approach and environmental DNA metabarcoding. The variation of the mycobiota associated with the two lichen species was extremely high, and a stable species-specific core mycobiota was not detected with the methods we applied. Most taxa were present in a low fraction of the samples, and no fungus was ubiquitously present in either lichen species. The mycobiota are thus composed of heterogeneous fungi, and some taxa are detectable only by culture-dependent approaches. We suspect that lichens act as niches in which these fungi may exploit thallus resources and only a few may establish more stable trophic relationships with the major symbiotic partners.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"69 ","pages":"Article 101331"},"PeriodicalIF":2.9,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1754504824000023/pdfft?md5=903c3464a9447820e18ab28fa85768d6&pid=1-s2.0-S1754504824000023-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140041577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信