Global Change Biology Bioenergy最新文献

筛选
英文 中文
Phasing out palm and soy oil biodiesel in the EU: What is the benefit? 欧盟逐步淘汰棕榈油和豆油生物柴油:有什么好处?
IF 5.6 3区 工程技术
Global Change Biology Bioenergy Pub Date : 2023-12-11 DOI: 10.1111/gcbb.13115
Tobias Heimann, Robin Argueyrolles, Manuel Reinhardt, Franziska Schuenemann, Mareike Söder, Ruth Delzeit
{"title":"Phasing out palm and soy oil biodiesel in the EU: What is the benefit?","authors":"Tobias Heimann,&nbsp;Robin Argueyrolles,&nbsp;Manuel Reinhardt,&nbsp;Franziska Schuenemann,&nbsp;Mareike Söder,&nbsp;Ruth Delzeit","doi":"10.1111/gcbb.13115","DOIUrl":"https://doi.org/10.1111/gcbb.13115","url":null,"abstract":"<p>The Renewable Energy Directive (RED II) by the European Union (EU) provides an updated framework for the use of renewable energy in the EU transport sector until 2030, and bans the use of biofuels with a high risk of causing indirect land-use change in high carbon stock areas (high ILUC-risk criteria). The only biofuel feedstock affected by this criterion is palm oil. We employ the computable general equilibrium (CGE) model DART-BIO for a scenario-based policy analysis and evaluate a phase-out of palm oil-based biodiesel, and an additional phase-out of soy oil-based biodiesel in the EU. Our results show that the palm phase-out has only a relatively small impact on global palm fruit production and total crop land use in tropical and subtropical regions, while the soy phase-out leads to a comparable stronger decrease in global soy production, and a reduction in total cropland use in soy-producing regions. Both policies lead to increased oilseed production in the EU. Therefore, farmer in Malaysia and Indonesia face a significantly reduced income. While European farmers profit the most, EU firms and households are confronted with higher expenditures. Finally, this study indicates that unilateral demand-side regulations for a single good in a single sector is not sufficient for effective environmental protection. Enhanced binding sustainability criteria and certification schemes for the use of all vegetable oils in every sector and industry as well as improved protection schemes for sensible forest areas are necessary.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"16 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13115","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138564782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low risk management intervention: Limited impact of remedial tillage on net ecosystem carbon balance at a commercial Miscanthus plantation 低风险的管理干预:补救性耕作对木棉商业种植园生态系统净碳平衡的有限影响
IF 5.6 3区 工程技术
Global Change Biology Bioenergy Pub Date : 2023-12-08 DOI: 10.1111/gcbb.13114
R. L. Rowe, H. M. Cooper, A. Hastings, A. Mabey, A. M. Keith, N. P. McNamara, R. Morrison
{"title":"Low risk management intervention: Limited impact of remedial tillage on net ecosystem carbon balance at a commercial Miscanthus plantation","authors":"R. L. Rowe,&nbsp;H. M. Cooper,&nbsp;A. Hastings,&nbsp;A. Mabey,&nbsp;A. M. Keith,&nbsp;N. P. McNamara,&nbsp;R. Morrison","doi":"10.1111/gcbb.13114","DOIUrl":"https://doi.org/10.1111/gcbb.13114","url":null,"abstract":"<p>Perennial bioenergy crops are a key tool in decarbonizing global energy systems, but to ensure the efficient use of land resources, it is essential that yields and crop longevity are maximized. Remedial shallow surface tillage is being explored in commercial Miscanthus plantations as an approach to reinvigorate older crops and to rectify poor establishment, improving yields. There are posited links, however, between tillage and losses in soil carbon (C) via increased ecosystem C fluxes to the atmosphere. As Miscanthus is utilized as an energy crop, changes in field C fluxes need to be assessed as part of the C balance of the crop. Here, for the first time, we quantify the C impacts of remedial tillage at a mature commercial Miscanthus plantation in Lincolnshire, United Kingdom. Net ecosystem C production based on eddy covariance flux observations and exported yield totalled 12.16 Mg C ha<sup>−1</sup> over the 4.6 year period after tillage, showing the site functioned as a net sink for atmospheric carbon dioxide (CO<sub>2</sub>). There was no indication of negative tillage induced impacts on soil C stocks, with no difference 3 years post tillage in the surface (0–30 cm) or deep (0–70 cm) soil C stocks between the tilled Miscanthus field and an adjacent paired untilled Miscanthus field. Comparison to historic samples showed surface soil C stocks increased by 11.16 ± 3.91 Mg C ha<sup>−1</sup> between pre (October 2011) and post tillage sampling (November 2016). Within the period of the study, however, the tillage did not result in the increased yields necessary to “pay back” the tillage induced yield loss. Rather the crop was effectively re-established, with progressive yield increases over the study period, mirroring expectations of newly planted sites. The overall impacts of remedial tillage will depend therefore, on the longer-term impacts on crop longevity and yields.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"16 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13114","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138558215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Environmental factors controlling biochar climate change mitigation potential in British Columbia's agricultural soils 控制不列颠哥伦比亚省农业土壤中生物炭减缓气候变化潜力的环境因素
IF 5.6 3区 工程技术
Global Change Biology Bioenergy Pub Date : 2023-11-29 DOI: 10.1111/gcbb.13109
David Lefebvre, Jean-Thomas Cornelis, Jeroen Meersmans, Jack Edgar, Morgan Hamilton, Xiaotao Bi
{"title":"Environmental factors controlling biochar climate change mitigation potential in British Columbia's agricultural soils","authors":"David Lefebvre,&nbsp;Jean-Thomas Cornelis,&nbsp;Jeroen Meersmans,&nbsp;Jack Edgar,&nbsp;Morgan Hamilton,&nbsp;Xiaotao Bi","doi":"10.1111/gcbb.13109","DOIUrl":"10.1111/gcbb.13109","url":null,"abstract":"<p>To combat climate change, carbon dioxide must be prevented from entering the atmosphere or even removed from it. Biochar is one potential practice to sequester carbon, but its climate change mitigation potential depends on a multitude of parameters. Differentiating areas of low and high climate change mitigation through biochar addition is key to maximize its potential and effectively use the available feedstock for its production. This study models the realistic application of 1 metric tonne (t) per hectare (ha) of forest harvest residue derived biochar over the climatically and pedologically diverse agricultural area of British Columbia, Canada, and provides a framework and assumptions for reproducibility in other parts of the world. The model accounts for the direct (input of organic carbon) and indirect (enhanced plant biomass) effects of biochar on soil organic carbon stock, its impact on nitrous oxide emissions from soils, and the avoided emissions from the reduced lime requirement due to biochar's alkalinization potential. Impacts are modelled over 20-year time horizon to account for the duration and magnitude variation over time of biochar effect on plant biomass and nitrous oxide emissions from soil and conform to the IPCC GWP 20-year time horizon reporting. The results show that a single application of 1 t of biochar per ha<sup>−1</sup> can mitigate between 3 and 5 t CO<sub>2</sub>e ha<sup>−1</sup> over a 20-year time frame. Applied to the 746,000 ha of agricultural land of British Columbia this translate to the mitigation of a total of 2.5 million metric tonnes (Mt) CO<sub>2</sub>e over a 20-year time frame. Further, the results identify agricultural areas in the Lower Mainland region (the southwestern corner of British Columbia) as the area maximizing climate change mitigation potential through biochar addition due to a combination of relative high temperature, high precipitation, and crops with high nitrogen requirement.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"16 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13109","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138512310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Options to improve the carbon balance of the harvested wood products sector in four EU countries 改善四个欧盟国家采伐木材产品部门碳平衡的方案
IF 5.6 3区 工程技术
Global Change Biology Bioenergy Pub Date : 2023-11-23 DOI: 10.1111/gcbb.13104
Nicola Bozzolan, Giacomo Grassi, Frits Mohren, Gert-Jan Nabuurs
{"title":"Options to improve the carbon balance of the harvested wood products sector in four EU countries","authors":"Nicola Bozzolan,&nbsp;Giacomo Grassi,&nbsp;Frits Mohren,&nbsp;Gert-Jan Nabuurs","doi":"10.1111/gcbb.13104","DOIUrl":"10.1111/gcbb.13104","url":null,"abstract":"<p>Harvested wood products (HWP) may contribute to climate change mitigation by storing carbon and by replacing energy-intensive materials and fossil energy, reducing greenhouse gas (GHG) emissions. However, when assessing improved HWP utilisations, interactions between wood use pathways, the carbon stock dynamics, and the resulting effect on the GHG balance are still not well-understood. This research aims to assess the carbon sequestration effects of alternative wood product utilisations in four European Union (EU) countries. We conducted a material flow analysis of wood uses in France, Finland, Germany, and Spain for 2017 taking into account national production, imports, and exports. Then, we quantified the future dynamics of carbon stock in the HWP through time, assuming the same as in 2017 input and ignoring the forest sink. We then ran six alternative scenarios: two energy-focused (Energy, Energy+), two material-focused (Cascading, Material), one with extended half-life of the wood products (HL) and one as business as usual. For the simulation period (2020–2050), the material scenario leads to the highest mitigation benefits with a cumulative HWP net CO<sub>2</sub> removals of −502 Mt CO<sub>2</sub> for Germany, −290 Mt CO<sub>2</sub> for France, −118 Mt CO<sub>2</sub> for Spain, and −116 Mt CO<sub>2</sub> for Finland over the 30 years. The Energy+ scenario with an increase in wood usage for bioenergy generates a loss of the HWP pool of 351, 80, 77, and 6 Mt CO<sub>2</sub> for the same countries, not accounting for energy substitution effects. Overall, our results suggest that the HWP carbon stock can be increased in the short-medium term by prioritizing the use of wood for material purposes, while maintaining constant harvest. The HWP mitigation potential differed greatly according to national wood industry characteristics. Hence, tailoring the HWP mitigation strategies to the specific characteristics of the national wood chain would enhance the HWP climate benefits.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"16 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13104","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138512311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carbon storage in old hedgerows: The importance of below-ground biomass 老树篱中的碳储存:地下生物量的重要性
IF 5.6 3区 工程技术
Global Change Biology Bioenergy Pub Date : 2023-11-16 DOI: 10.1111/gcbb.13112
Sophie Drexler, Eiko Thiessen, Axel Don
{"title":"Carbon storage in old hedgerows: The importance of below-ground biomass","authors":"Sophie Drexler,&nbsp;Eiko Thiessen,&nbsp;Axel Don","doi":"10.1111/gcbb.13112","DOIUrl":"10.1111/gcbb.13112","url":null,"abstract":"<p>Ambitious climate change mitigation goals require novel carbon (C) sinks in agricultural systems. Thus, the establishment of new hedgerows is increasingly attracting attention as a C sequestration measure. Despite hedgerows being a traditional agroforestry system, few studies have been conducted on hedgerow C stocks. Data on below-ground biomass (BGB) in particular are limited. The aim of this study was therefore to quantify both above-ground biomass (AGB) and BGB C stocks, as well as litter and soil organic C stocks, of established hedgerow systems by destructive sampling at three sites in northern Germany. The total biomass C (TBC) stock of the sampled hedgerows was 105 ± 11 Mg ha<sup>−1</sup> on average. An additional 11 ± 2 Mg ha<sup>−1</sup> were found in hedgerow litter and dead roots. Coarse roots (34% of TBC), stumps (22%) and harvestable biomass (20%) were the largest biomass C pools of the hedgerows. The BGB:AGB ratio was 0.7 ± 0.1, showing the importance of BGB in old hedgerow systems. Compared with other woody systems, these old hedgerows seem to have a different biomass distribution, with more biomass allocated below-ground. About 15% of BGB C stock was stored in fine roots, whereas 85% was stored in coarse roots. The topsoil (0–30 cm) contained 85% of coarse root biomass C and 51% of fine root biomass C. Hedgerow C stock exceeded that of average German forests, and thus demonstrated their large potential for C sequestration when newly planted. This study provides detailed empirical data on C stocks in old hedgerow systems, and thus can be used to take hedgerow C sinks into account in C farming frameworks.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"16 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13112","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138512301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biochar and manure additions increased above- and belowground wood decomposition, and soil enzyme activities in a sandy loam soil 添加生物炭和粪肥可提高沙质壤土的地上和地下木材分解率以及土壤酶活性
IF 5.6 3区 工程技术
Global Change Biology Bioenergy Pub Date : 2023-11-14 DOI: 10.1111/gcbb.13110
Ruirui Zhao, Deborah S. Page-Dumroese, Yong Liu, Kai Wang, R. Kasten Dumroese
{"title":"Biochar and manure additions increased above- and belowground wood decomposition, and soil enzyme activities in a sandy loam soil","authors":"Ruirui Zhao,&nbsp;Deborah S. Page-Dumroese,&nbsp;Yong Liu,&nbsp;Kai Wang,&nbsp;R. Kasten Dumroese","doi":"10.1111/gcbb.13110","DOIUrl":"10.1111/gcbb.13110","url":null,"abstract":"<p>While biochar and manure can provide considerable benefits to soil properties, how these amendments may alter soil microbial activity and decomposition processes remains unknown. In a split-split-split-plot experiment, we amended a sandy loam soil with three rates of manure (whole plot; 0, 3, 9 Mg ha<sup>−1</sup>) and biochar (split-plot; 0, 2.5, 10 Mg ha<sup>−1</sup>), and installed three species of wood stakes (split-split-split plot; triploid poplar, <i>Populus tomentosa</i> Carr.; trembling aspen, <i>Populus tremuloides</i> Michx.; and loblolly pine, <i>Pinus taeda</i> L.) on the soil surface and in the mineral soil (split-split plot) to serve as a substrate for microbial degradation. Wood stakes were sampled 3 years after installation to assess decomposition rates (mass loss), and changes in wood carbon (C) and nitrogen (N). In addition, soil extracellular enzyme activities at the 0–20 cm depth were examined. Biochar alone, especially 10 Mg ha<sup>−1</sup>, increased wood stake decomposition and moisture content on the soil surface and in the mineral soil. Manure at the rate of 9 Mg ha<sup>−1</sup> increased soil N-acetyl-β-D-glucosaminidase, α-glucosidase, and aryl sulfatase activities by 91%, 17%, and 48% respectively. Because of the synergistic benefits of biochar and manure, we suggest that, in this climatic regime and soil texture, 10 Mg ha<sup>−1</sup> biochar can be used for soil C sequestration and soil quality improvement, and 9 Mg ha<sup>−1</sup> manure can be used in combination with biochar to build soil organic matter in plantations.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"16 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13110","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134992000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Valorisation of marginal agricultural land in the bioeconomy 生物经济中边际农业用地的增值
IF 5.6 3区 工程技术
Global Change Biology Bioenergy Pub Date : 2023-11-13 DOI: 10.1111/gcbb.13105
Andreas Kiesel, Moritz von Cossel, John Clifton-Brown, Iris Lewandowski
{"title":"Valorisation of marginal agricultural land in the bioeconomy","authors":"Andreas Kiesel,&nbsp;Moritz von Cossel,&nbsp;John Clifton-Brown,&nbsp;Iris Lewandowski","doi":"10.1111/gcbb.13105","DOIUrl":"https://doi.org/10.1111/gcbb.13105","url":null,"abstract":"&lt;p&gt;The bioeconomy requires more sustainably produced biomass to make a positive societal impact. Sustainable biomass resources must neither compete directly with essential food supplies through competition for production resources, nor through indirect land use change (iLUC) displacing food production elsewhere (Clifton-Brown et al., &lt;span&gt;2023&lt;/span&gt;). Utilization of marginal, abandoned and degraded land can provide low iLUC risk biomass which is in line with the Renewable Energy Directive RED II (European Union, &lt;span&gt;2018&lt;/span&gt;). Marginal land, as defined by Elbersen et al. (&lt;span&gt;2017&lt;/span&gt;), is estimated to represent a very large land resource of 38–53.5 million ha in the EU and the United Kingdom (Gerwin et al., &lt;span&gt;2018&lt;/span&gt;; von Cossel, Lewandowski, et al., &lt;span&gt;2019&lt;/span&gt;) and climate warming impacts are likely to speed up degradation of arable into marginal land (European Environment Agency [EEA], &lt;span&gt;2017&lt;/span&gt;; IPCC, &lt;span&gt;2023&lt;/span&gt;). Marginal lands are at particular risk of becoming abandoned and abandoned land areas are projected to increase by 5%–10% (4.8 million ha) in the EU and the United Kingdom by 2030 (Elbersen et al., &lt;span&gt;2022&lt;/span&gt;; Perpiña Castillo et al., &lt;span&gt;2018&lt;/span&gt;).&lt;/p&gt;&lt;p&gt;This Special Issue focuses on the ‘valorisation of marginal agricultural land for the bioeconomy’ to maximize exploitation of this land resource and is largely based on research performed in two EU-Horizon-2020-funded projects: GRACE (Growing advanced industrial crops on marginal lands for biorefineries, GA 745012, https://www.grace-bbi.eu/) and MAGIC (Marginal Lands for Growing Industrial Crops, GA 727698, https://magic-h2020.eu/). It is divided into four sections: Section 1 consists of seven studies assessing the potential of marginal land for crop production. Section 2 presents extensive field trial results for industrial crop cultivation using the model crop miscanthus and assessing the interactions between Genotype (or hybrid) × Environment × Management (G × E × M). Section 3 introduces results from studies on biomass utilization, ranging from biorefinery approaches for the production of novel biobased platform chemicals to direct material use. In Section 4, results of the environmental, social and techno-economic life cycle assessments of different value chains are presented. Finally, the aggregated ‘lessons learnt’ in the last decade of perennial biomass crop research are translated into recommendations to shape EU policy for the support of perennial cropping systems.&lt;/p&gt;&lt;p&gt;Early stage identification of land abandonment is necessary to maximize exploitation of marginal land. The study of Meijninger et al. (&lt;span&gt;2022&lt;/span&gt;) introduces a novel approach for identifying arable land abandonment using radar coherence data in combination with a Random Forest model. The results of this study show that radar-based analysis is a relatively simple method to detect land abandonment at an early stage and allow monitoring and rapid po","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"15 12","pages":"1418-1423"},"PeriodicalIF":5.6,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13105","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"109168499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptomics reveal how circadian regulation contributes to starch hyperaccumulation in marine alga Tetraselmis helgolandica 转录组学揭示了昼夜节律调节如何促进海藻淀粉的过度积累
IF 5.6 3区 工程技术
Global Change Biology Bioenergy Pub Date : 2023-11-06 DOI: 10.1111/gcbb.13106
Qianwen Shi, Zuodong Zhou, Zhiwei Hong, Zhi Yang, Zhengquan Gao, Liyun Sun, Jianhua Fan
{"title":"Transcriptomics reveal how circadian regulation contributes to starch hyperaccumulation in marine alga Tetraselmis helgolandica","authors":"Qianwen Shi,&nbsp;Zuodong Zhou,&nbsp;Zhiwei Hong,&nbsp;Zhi Yang,&nbsp;Zhengquan Gao,&nbsp;Liyun Sun,&nbsp;Jianhua Fan","doi":"10.1111/gcbb.13106","DOIUrl":"https://doi.org/10.1111/gcbb.13106","url":null,"abstract":"<p><i>Tetraselmis helgolandica</i> var. Tsingtaoensis is a marine microalga. It can produce a large amount of starch, especially amylose, with addition of carbon source and specific circadian rhythm. The mechanism behind this phenomenon is still unclear. Analysis of this mechanism can help to develop <i>T. helgolandica</i> into a new green bioengineering chassis organism. We explained how circadian rhythm and glucose affect the rate of starch accumulation and starch structure in <i>T. helgolandica</i> based on the transcriptome. The glucose inhibited the photosynthetic system of <i>T. helgolandica</i>, while the circadian rhythm can alleviate the inhibition. Circadian rhythm induced the upregulation of Embden–Meyerhof–Parnas pathway and pentose phosphate pathway (PPP) in <i>T. helgolandica</i>, but had little effect on the tricarboxylic acid cycle. PPP pathway provides Ribulose-1,5-bisphosphate, which may be beneficial for dark reactions and nucleotide synthesis. And PPP pathway provides Nicotinamide adenine dinucleotide phosphate, which facilitates energy substance synthesis. This will further upregulate the starch metabolic pathway. The transcript level of the key gene ADP-Glucose pyrophosphorylase is mainly regulated by glucose. The granule-bound starch synthase (<i>gbss</i>), a key gene for amylose synthesis, is mainly influenced by circadian rhythm. In general, the increase of starch synthesis and amylose ratio requires both glucose addition and circadian rhythm. We report the first referenced transcriptome of <i>T. helgolandica</i>. Differences between transcripts reveal how circadian rhythm and glucose addition affected the rate of starch synthesis and structural variation. It provides a reference for an in-depth study of starch synthesis in green algae.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"15 12","pages":"1477-1493"},"PeriodicalIF":5.6,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13106","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"109164364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Natural lignin modulators improve bagasse saccharification of sugarcane and energy cane in field trials 天然木质素调节剂改善蔗渣糖化甘蔗和能源甘蔗的田间试验
IF 5.6 3区 工程技术
Global Change Biology Bioenergy Pub Date : 2023-11-03 DOI: 10.1111/gcbb.13108
Viviane Fátima de Oliveira, Lucas Figueiredo, Gabriel de Oliveira Correia, Maria de Fátima Pires da Silva Machado, Hugo Zeni Neto, Wanderley Dantas dos Santos, Claudete Aparecida Mangolin
{"title":"Natural lignin modulators improve bagasse saccharification of sugarcane and energy cane in field trials","authors":"Viviane Fátima de Oliveira,&nbsp;Lucas Figueiredo,&nbsp;Gabriel de Oliveira Correia,&nbsp;Maria de Fátima Pires da Silva Machado,&nbsp;Hugo Zeni Neto,&nbsp;Wanderley Dantas dos Santos,&nbsp;Claudete Aparecida Mangolin","doi":"10.1111/gcbb.13108","DOIUrl":"https://doi.org/10.1111/gcbb.13108","url":null,"abstract":"<p>The burgeoning cellulosic ethanol industry necessitates advancements in enzymatic saccharification, effective pretreatments for lignin removal, and the cultivation of crops more amenable to saccharification. Studies have demonstrated that natural inhibitors of lignin biosynthesis can enhance the saccharification of lignocellulose, even in tissues generated several months post-treatment. In this study, we applied daidzin (a competitive inhibitor of coniferaldehyde dehydrogenase), piperonylic acid (a <i>quasi</i>-irreversible inhibitor of cinnamate 4-hydroxylase), and methylenedioxy cinnamic acid (a competitive inhibitor of 4-coenzyme A ligase) to 60-day-old crops of two conventional Brazilian sugarcane cultivars and two energy cane clones, bred specifically for enhanced biomass production. The resultant biomasses were evaluated for lignin content and enzymatic saccharification efficiency without additional lignin-removal pretreatments. The treatments amplified the production of fermentable sugars in both the sugarcane cultivars and energy cane clones. The most successful results softened the most recalcitrant lignocellulose to the level of the least recalcitrant of the biomasses tested. Interestingly, the softest material became even more susceptible to saccharification.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"15 12","pages":"1465-1476"},"PeriodicalIF":5.6,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13108","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"109162374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Triacylglycerol, total fatty acid, and biomass accumulation of metabolically engineered energycane grown under field conditions confirms its potential as feedstock for drop-in fuel production 三酰甘油、总脂肪酸和在野外条件下生长的代谢工程能源甘蔗的生物量积累证实了它作为drop-in燃料生产原料的潜力
IF 5.6 3区 工程技术
Global Change Biology Bioenergy Pub Date : 2023-10-30 DOI: 10.1111/gcbb.13107
Viet Dang Cao, Baskaran Kannan, Guangbin Luo, Hui Liu, John Shanklin, Fredy Altpeter
{"title":"Triacylglycerol, total fatty acid, and biomass accumulation of metabolically engineered energycane grown under field conditions confirms its potential as feedstock for drop-in fuel production","authors":"Viet Dang Cao,&nbsp;Baskaran Kannan,&nbsp;Guangbin Luo,&nbsp;Hui Liu,&nbsp;John Shanklin,&nbsp;Fredy Altpeter","doi":"10.1111/gcbb.13107","DOIUrl":"https://doi.org/10.1111/gcbb.13107","url":null,"abstract":"<p>Metabolic engineering for hyperaccumulation of lipids in vegetative tissues of high biomass crops promises a step change in oil yields for the production of advanced biofuels. Energycane is the ideal feedstock for this approach due to its exceptional biomass production and persistence under marginal conditions. Here, we evaluated metabolically engineered energycane with constitutive expression of the lipogenic factors <i>WRINKLED</i>1 (<i>WRI</i>1), <i>DIACYLGLYCEROL ACYLTRANSFERASE</i>1 (<i>DGAT</i>1), and <i>OLEOSIN</i>1 (<i>OLE</i>1) for the accumulation of triacylglycerol (TAG), total fatty acid (TFA), and biomass under field conditions at the University of Florida-IFAS experiment station near Citra, Florida. TAG and TFA accumulation were highest in leaves (up to 9.9% and 12.9% of DW, respectively), followed by juice from crushed stems, stems, and roots. TAG and TFA accumulation increased up to harvest time and correlated highest with <i>OLE</i>1 and <i>DGAT</i>1 expression. Biomass dry weight, TAG, and TFA content differed greatly depending on <i>DGAT</i>1 and <i>OLE</i>1 expression in transgenic lines with similar <i>WRI</i>1 expression. Biomass did not significantly differ between WT and line L2 with <i>DAGT</i>1 and <i>OLE</i>1 expressed at low levels and TAG and TFA accumulating to 12- and 1.6-fold that of WT leaves, respectively. In contrast, line L13, with intron-mediated enhancement of <i>DGAT</i>1 expression, displayed a 245- to 330-fold increase in TAG and a 4.75- to 6.45-fold increase in TFA content compared with WT leaves and a biomass reduction of 52%. These results provide the basis for developing novel feedstocks for expanding plant lipid production and point to new prospects for advanced biofuels.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"15 12","pages":"1450-1464"},"PeriodicalIF":5.6,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13107","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"109176014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信