Fatemeh Yazarlou, Fatemeh Alizadeh, Leonard Lipovich, Roberta Giordo, Soudeh Ghafouri-Fard
{"title":"Tracing vitamins on the long non-coding lane of the transcriptome: vitamin regulation of LncRNAs.","authors":"Fatemeh Yazarlou, Fatemeh Alizadeh, Leonard Lipovich, Roberta Giordo, Soudeh Ghafouri-Fard","doi":"10.1186/s12263-024-00739-4","DOIUrl":"10.1186/s12263-024-00739-4","url":null,"abstract":"<p><p>A major revelation of genome-scale biological studies in the post-genomic era has been that two-thirds of human genes do not encode proteins. The majority of non-coding RNA transcripts in humans are long non-coding RNA (lncRNA) molecules, non-protein-coding regulatory transcripts with sizes greater than 500 nucleotides. LncRNAs are involved in nearly every aspect of cellular physiology, playing fundamental regulatory roles both in normal cells and in disease. As result, they are functionally linked to multiple human diseases, from cancer to autoimmune, inflammatory, and neurological disorders. Numerous human conditions and diseases stem from gene-environment interactions; in this regard, a wealth of reports demonstrate that the intake of specific and essential nutrients, including vitamins, shapes our transcriptome, with corresponding impacts on health. Vitamins command a vast array of biological activities, acting as coenzymes, antioxidants, hormones, and regulating cellular proliferation and coagulation. Emerging evidence suggests that vitamins and lncRNAs are interconnected through several regulatory axes. This type of interaction is expected, since lncRNA has been implicated in sensing the environment in eukaryotes, conceptually similar to riboswitches and other RNAs that act as molecular sensors in prokaryotes. In this review, we summarize the peer-reviewed literature to date that has reported specific functional linkages between vitamins and lncRNAs, with an emphasis on mammalian models and humans, while providing a brief overview of the source, metabolism, and function of the vitamins most frequently investigated within the context of lncRNA molecular mechanisms, and discussing the published research findings that document specific connections between vitamins and lncRNAs.</p>","PeriodicalId":55123,"journal":{"name":"Genes and Nutrition","volume":"19 1","pages":"5"},"PeriodicalIF":3.5,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10935982/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140112264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lynette J Oost, Roderick C Slieker, Marieke T Blom, Leen M 't Hart, Joost G J Hoenderop, Joline W J Beulens, Jeroen H F de Baaij
{"title":"Genome-wide association study of serum magnesium in type 2 diabetes.","authors":"Lynette J Oost, Roderick C Slieker, Marieke T Blom, Leen M 't Hart, Joost G J Hoenderop, Joline W J Beulens, Jeroen H F de Baaij","doi":"10.1186/s12263-024-00738-5","DOIUrl":"10.1186/s12263-024-00738-5","url":null,"abstract":"<p><p>People with type 2 diabetes have a tenfold higher prevalence of hypomagnesemia, which is suggested to be caused by low dietary magnesium intake, medication use, and genetics. This study aims to identify the genetic loci that influence serum magnesium concentration in 3466 people with type 2 diabetes. The GWAS models were adjusted for age, sex, eGFR, and HbA1c. Associated traits were identified using publicly available data from GTEx consortium, a human kidney eQTL atlas, and the Open GWAS database. The GWAS identified a genome-wide significant locus in TAF3 (p = 2.9 × 10<sup>-9</sup>) in people with type 2 diabetes. In skeletal muscle, loci located in TAF3 demonstrate an eQTL link to ATP5F1C, a gene that is involved in the formation of Mg<sup>2+</sup>-ATP. Serum Mg<sup>2+</sup> levels were associated with MUC1/TRIM46 (p = 2.9 × 10<sup>-7</sup>), SHROOM3 (p = 4.0 × 10<sup>-7</sup>), and SLC22A7 (p = 1.0 × 10<sup>-6</sup>) at nominal significance, which is in combination with the eQTL data suggesting that they are possible candidates for renal failure. Several genetic loci were in agreement with previous genomic studies which identified MUC1/TRIM46 (P<sub>meta</sub> = 6.9 × 10<sup>-29</sup>, P<sub>Q</sub> = 0.81) and SHROOM3 (P<sub>meta</sub> = 2.9 × 10<sup>-27</sup>, P<sub>Q</sub> = 0.04) to be associated with serum Mg<sup>2+</sup> in the general population. In conclusion, serum magnesium concentrations are associated with genetic variability around the regions of TAF3, MUC1/TRIM46, SHROOM3, and SLC22A7 in type 2 diabetes.</p>","PeriodicalId":55123,"journal":{"name":"Genes and Nutrition","volume":"19 1","pages":"2"},"PeriodicalIF":3.3,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10811844/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139567604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of dietary PUFA patterns and FADS genotype on breast milk PUFAs in Chinese lactating mothers.","authors":"Wen-Hui Xu, Yi-Ru Chen, Hui-Min Tian, Yi-Fei Chen, Jia-Yu Gong, Hai-Tao Yu, Guo-Liang Liu, Lin Xie","doi":"10.1186/s12263-023-00735-0","DOIUrl":"10.1186/s12263-023-00735-0","url":null,"abstract":"<p><strong>Background: </strong>Breastfeeding affects the growth and development of infants, and polyunsaturated fatty acids (PUFAs) play a crucial role in this process. To explore the factors influencing the PUFA concentration in breast milk, we conducted research on two aspects: dietary fatty acid patterns and single nucleotide polymorphisms (SNPs) in maternal fatty acid desaturase genes.</p><p><strong>Methods: </strong>Three hundred seventy Chinese Han lactating mothers were recruited. A dietary semi-quantitative food frequency questionnaire (FFQ) was used to investigate the dietary intake of lactating mothers from 22 to 25 days postpartum for 1 year. Meanwhile, breast milk samples were collected from the participants and tested for the concentrations of 8 PUFAs and 10 SNP genotypes. We sought to determine the effect of dietary PUFA patterns and SNPs on breast milk PUFAs. We used SPSS 24.0 statistical software for data analysis. Statistical tests were all bilateral tests, with P < 0.05 as statistically significant.</p><p><strong>Results: </strong>Under the same dietary background, PUFA contents in breast milk expressed by most major allele homozygote mothers tended to be higher than that expressed by their counterparts who carried minor allele genes. Moreover, under the same gene background, PUFA contents in breast milk expressed by the mother's intake of essential PUFA pattern tended to be higher than that expressed by their counterparts who took the other two kinds of dietary.</p><p><strong>Conclusions: </strong>Our study suggests that different genotypes and dietary PUFA patterns affect PUFA levels in breast milk. We recommend that lactating mothers consume enough essential fatty acids to ensure that their infants ingest sufficient PUFAs.</p>","PeriodicalId":55123,"journal":{"name":"Genes and Nutrition","volume":"18 1","pages":"16"},"PeriodicalIF":3.5,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598896/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50163845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. O. Gjevestad, K. Holven, A. Rundblad, A. Flatberg, M. Myhrstad, Karina Karlsen, S. Mutt, K. Herzig, I. Ottestad, S. Ulven
{"title":"Increased protein intake affects pro-opiomelanocortin (POMC) processing, immune function and IGF signaling in peripheral blood mononuclear cells of home-dwelling old subjects using a genome-wide gene expression approach","authors":"G. O. Gjevestad, K. Holven, A. Rundblad, A. Flatberg, M. Myhrstad, Karina Karlsen, S. Mutt, K. Herzig, I. Ottestad, S. Ulven","doi":"10.1186/s12263-019-0654-6","DOIUrl":"https://doi.org/10.1186/s12263-019-0654-6","url":null,"abstract":"","PeriodicalId":55123,"journal":{"name":"Genes and Nutrition","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2019-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12263-019-0654-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47898918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The role of PPARγ in childhood obesity-induced fractures","authors":"M. McCann, A. Ratneswaran","doi":"10.1186/s12263-019-0653-7","DOIUrl":"https://doi.org/10.1186/s12263-019-0653-7","url":null,"abstract":"","PeriodicalId":55123,"journal":{"name":"Genes and Nutrition","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2019-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12263-019-0653-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43077454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Estrogen biosynthesis in cultured skeletal muscle cells (L6) induced by amino acids","authors":"B. Iresjö, A. Landin, C. Ohlsson, K. Lundholm","doi":"10.1186/s12263-019-0652-8","DOIUrl":"https://doi.org/10.1186/s12263-019-0652-8","url":null,"abstract":"","PeriodicalId":55123,"journal":{"name":"Genes and Nutrition","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2019-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12263-019-0652-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45166840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Landberg, K. Hanhineva, K. Tuohy, M. Garcia‐Aloy, Izabela Biskup, R. Llorach, X. Yin, L. Brennan, M. Kolehmainen
{"title":"Biomarkers of cereal food intake","authors":"R. Landberg, K. Hanhineva, K. Tuohy, M. Garcia‐Aloy, Izabela Biskup, R. Llorach, X. Yin, L. Brennan, M. Kolehmainen","doi":"10.1186/s12263-019-0651-9","DOIUrl":"https://doi.org/10.1186/s12263-019-0651-9","url":null,"abstract":"","PeriodicalId":55123,"journal":{"name":"Genes and Nutrition","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2019-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12263-019-0651-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49154783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genes and NutritionPub Date : 2019-09-09eCollection Date: 2019-01-01DOI: 10.1186/s12263-019-0647-5
Samar Hk Tareen, Martina Kutmon, Ilja Cw Arts, Theo M de Kok, Chris T Evelo, Michiel E Adriaens
{"title":"Logical modelling reveals the PDC-PDK interaction as the regulatory switch driving metabolic flexibility at the cellular level.","authors":"Samar Hk Tareen, Martina Kutmon, Ilja Cw Arts, Theo M de Kok, Chris T Evelo, Michiel E Adriaens","doi":"10.1186/s12263-019-0647-5","DOIUrl":"https://doi.org/10.1186/s12263-019-0647-5","url":null,"abstract":"<p><strong>Background: </strong>Metabolic flexibility is the ability of an organism to switch between substrates for energy metabolism, in response to the changing nutritional state and needs of the organism. On the cellular level, metabolic flexibility revolves around the tricarboxylic acid cycle by switching acetyl coenzyme A production from glucose to fatty acids and vice versa. In this study, we modelled cellular metabolic flexibility by constructing a logical model connecting glycolysis, fatty acid oxidation, fatty acid synthesis and the tricarboxylic acid cycle, and then using network analysis to study the behaviours of the model.</p><p><strong>Results: </strong>We observed that the substrate switching usually occurs through the inhibition of pyruvate dehydrogenase complex (PDC) by pyruvate dehydrogenase kinases (PDK), which moves the metabolism from glycolysis to fatty acid oxidation. Furthermore, we were able to verify four different regulatory models of PDK to contain known biological observations, leading to the biological plausibility of all four models across different cells and conditions.</p><p><strong>Conclusion: </strong>These results suggest that the cellular metabolic flexibility depends upon the PDC-PDK regulatory interaction as a key regulatory switch for changing metabolic substrates.</p>","PeriodicalId":55123,"journal":{"name":"Genes and Nutrition","volume":"14 ","pages":"27"},"PeriodicalIF":3.5,"publicationDate":"2019-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12263-019-0647-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41220697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genes and NutritionPub Date : 2019-08-15eCollection Date: 2019-01-01DOI: 10.1186/s12263-019-0650-x
Kathrine B Dall, Nils J Færgeman
{"title":"Metabolic regulation of lifespan from a <i>C. elegans</i> perspective.","authors":"Kathrine B Dall, Nils J Færgeman","doi":"10.1186/s12263-019-0650-x","DOIUrl":"https://doi.org/10.1186/s12263-019-0650-x","url":null,"abstract":"<p><p>Decline of cellular functions especially cognitive is a major deficit that arises with age in humans. Harnessing the strengths of small and genetic tractable model systems has revealed key conserved regulatory biochemical and signaling pathways that control aging. Here, we review some of the key signaling and biochemical pathways that coordinate aging processes with special emphasis on <i>Caenorhabditis elegans</i> as a model system and discuss how nutrients and metabolites can regulate lifespan by coordinating signaling and epigenetic programs. We focus on central nutrient-sensing pathways such as mTOR and insulin/insulin-like growth factor signaling and key transcription factors including the conserved basic helix-loop-helix transcription factor HLH-30/TFEB.</p>","PeriodicalId":55123,"journal":{"name":"Genes and Nutrition","volume":"14 ","pages":"25"},"PeriodicalIF":3.5,"publicationDate":"2019-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12263-019-0650-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41220698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genes and NutritionPub Date : 2019-08-14eCollection Date: 2019-01-01DOI: 10.1186/s12263-019-0648-4
Muyao Xi, Lars O Dragsted
{"title":"Biomarkers of seaweed intake.","authors":"Muyao Xi, Lars O Dragsted","doi":"10.1186/s12263-019-0648-4","DOIUrl":"https://doi.org/10.1186/s12263-019-0648-4","url":null,"abstract":"<p><p>Seaweeds are marine macroalgae, some of which are edible. They are rich in specific dietary fibers and also contain other characteristic biological constituents. Biological activities have been investigated mainly in animal studies, while very few results are available from human studies. Biomarkers of food intake (BFIs) specific to seaweed could play an important role as objective measurements in observational studies and dietary intervention studies. Thus, the health effects of seaweeds can be explored and understood by discovering and applying BFIs. This review summarizes studies to identify candidate BFIs of seaweed intake. These BFIs are evaluated by a structured validation scheme. Hydroxytrifuhalol A, 7-hydroxyeckol, C-O-C dimer of phloroglucinol, diphloroethol, fucophloroethol, dioxinodehydroeckol, and/or their glucuronides or sulfate esters which all belong to the phlorotannins are considered candidate biomarkers for brown seaweed. Fucoxanthinol, the main metabolite of fucoxanthin, is also regarded as a candidate biomarker for brown seaweed. Further validation will be needed due to the very limited number of human studies. Further studies are also needed to identify additional candidate biomarkers, relevant specifically for the red and green seaweeds, for which no candidate biomarkers emerged from the literature search. Reliable BFIs should also ideally be found for the whole seaweed food group.</p>","PeriodicalId":55123,"journal":{"name":"Genes and Nutrition","volume":"14 ","pages":"24"},"PeriodicalIF":3.5,"publicationDate":"2019-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12263-019-0648-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41220695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}