Ke Shi, Yongbo Yu, Zhaolin Li, Miaomiao Hou, Xinyi Li
{"title":"Causal relationship between dietary salt intake and dementia risk: Mendelian randomization study.","authors":"Ke Shi, Yongbo Yu, Zhaolin Li, Miaomiao Hou, Xinyi Li","doi":"10.1186/s12263-024-00741-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Observational research has indicated a potential link between dietary salt intake and susceptibility to dementia. However, it is important to note that these types of studies are prone to the issues of reverse causation and residual confounding. Therefore, we conducted a two-sample Mendelian randomization (MR) study to explore the causality.</p><p><strong>Method: </strong>To explore the causal relationship between them, this Mendelian randomization (MR) study incorporated summary statistics of dietary salt intake and dementia. We estimated the causality between salt intake and the risk of overall dementia and various subtypes of dementia, including Alzheimer's disease (AD), Vascular dementia (VaD), and Lewy body dementia (LBD). The inverse variance-weighted (IVW) method was the major MR analysis. To conduct sensitivity analyses, we employed various MR methods, the pleiotropy residual sum and outlier (MR-PRESSO) method, and the leave-one-out approach. The MR-Egger intercept and Cochran's Q test were conducted to test pleiotropy and heterogeneity respectively.</p><p><strong>Results: </strong>A suggestive association was observed for genetically predicted higher dietary salt intake and increased risk of overall dementia in the European ancestry [odds ratio (OR): 1.542; 95% confidence interval (95% CI): 1.095-2.169; P = 0.013]. The causal relationship between dietary salt intake and overall dementia is robust with respect to the choice of statistical methods and is validated through extensive sensitivity analyses that guard against various model assumption violations. Meanwhile, no clear heterogeneity or pleiotropy was identified. However, we failed to detect a causal effect of dietary salt intake on the risk of various dementia subtypes.</p><p><strong>Conclusion: </strong>The results of this research present strong evidence that established a significant association between dietary salt intake and the likelihood of developing dementia. These findings reinforce the notion that the amount of dietary salt intake plays a crucial role in determining the risk of acquiring this cognitive condition. By establishing a definitive correlation, this study highlights the importance of reducing salt consumption as a preventive measure against dementia.</p>","PeriodicalId":55123,"journal":{"name":"Genes and Nutrition","volume":"19 1","pages":"6"},"PeriodicalIF":3.3000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10943813/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes and Nutrition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12263-024-00741-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Observational research has indicated a potential link between dietary salt intake and susceptibility to dementia. However, it is important to note that these types of studies are prone to the issues of reverse causation and residual confounding. Therefore, we conducted a two-sample Mendelian randomization (MR) study to explore the causality.
Method: To explore the causal relationship between them, this Mendelian randomization (MR) study incorporated summary statistics of dietary salt intake and dementia. We estimated the causality between salt intake and the risk of overall dementia and various subtypes of dementia, including Alzheimer's disease (AD), Vascular dementia (VaD), and Lewy body dementia (LBD). The inverse variance-weighted (IVW) method was the major MR analysis. To conduct sensitivity analyses, we employed various MR methods, the pleiotropy residual sum and outlier (MR-PRESSO) method, and the leave-one-out approach. The MR-Egger intercept and Cochran's Q test were conducted to test pleiotropy and heterogeneity respectively.
Results: A suggestive association was observed for genetically predicted higher dietary salt intake and increased risk of overall dementia in the European ancestry [odds ratio (OR): 1.542; 95% confidence interval (95% CI): 1.095-2.169; P = 0.013]. The causal relationship between dietary salt intake and overall dementia is robust with respect to the choice of statistical methods and is validated through extensive sensitivity analyses that guard against various model assumption violations. Meanwhile, no clear heterogeneity or pleiotropy was identified. However, we failed to detect a causal effect of dietary salt intake on the risk of various dementia subtypes.
Conclusion: The results of this research present strong evidence that established a significant association between dietary salt intake and the likelihood of developing dementia. These findings reinforce the notion that the amount of dietary salt intake plays a crucial role in determining the risk of acquiring this cognitive condition. By establishing a definitive correlation, this study highlights the importance of reducing salt consumption as a preventive measure against dementia.
期刊介绍:
This journal examines the relationship between genetics and nutrition, with the ultimate goal of improving human health. It publishes original research articles and review articles on preclinical research data coming largely from animal, cell culture and other experimental models as well as critical evaluations of human experimental data to help deliver products with medically proven use.