European Journal of Wood and Wood Products最新文献

筛选
英文 中文
Enhancing color fastness and reducing environmental impact: an eco-friendly dyeing method for Ayous wood 提高色牢度,减少对环境的影响:一种环保的Ayous木材染色方法
IF 2.4 3区 农林科学
European Journal of Wood and Wood Products Pub Date : 2025-04-12 DOI: 10.1007/s00107-025-02252-w
Wensheng Liu, Fanjun Yu, Chengsheng Gui, Yunfang Shen, Zhe Qiu, Zefang Xiao, Tianpeng Zhang, Yanjun Xie
{"title":"Enhancing color fastness and reducing environmental impact: an eco-friendly dyeing method for Ayous wood","authors":"Wensheng Liu,&nbsp;Fanjun Yu,&nbsp;Chengsheng Gui,&nbsp;Yunfang Shen,&nbsp;Zhe Qiu,&nbsp;Zefang Xiao,&nbsp;Tianpeng Zhang,&nbsp;Yanjun Xie","doi":"10.1007/s00107-025-02252-w","DOIUrl":"10.1007/s00107-025-02252-w","url":null,"abstract":"<div><p>Currently, wood dyeing technology plays an important role in its enhancing aesthetics and market competitiveness. However, still facing the dual challenges of insufficient color fastness of dyeing and environmental pollution caused by dye wastes generated during the dyeing process. Herein, an efficient and environmentally friendly dyeing method was proposed to improve color fastness utilizing chemisorption and electrostatic adsorption in low concentration dyeing solution. The chemical modification of Ayous wood using 2,3-epoxypropyltrimethylammonium chloride was carried out by introducing the cationic groups to reduce the dyeing resistance and increase the binding force of dye molecules on the wood. Kinetic and thermodynamic analyses revealed that the adsorption behavior between cation-modified bleached wood (CBW) and acid dyes adheres to the quasi second-order kinetic model (R<sup>2</sup> = 0.98) and Freundlich isothermal model (R<sup>2</sup> = 0.91), suggesting an adsorption process in which chemical adsorption dominated. Therefore, there was a significant increase in color fastness. Compared to the traditional dyeing method, the quantity of dyes consumed in this method can be reduced by 40%, significantly diminishing the environmental load of dyeing waste liquid. This study offers an efficient and environmentally friendly modification strategy for wood dyeing, highlighting a potential of CBW for practical applications.</p></div>","PeriodicalId":550,"journal":{"name":"European Journal of Wood and Wood Products","volume":"83 2","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143821941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Physical and mechanical properties of wood treated with chitosan-caffeine formulations 修正:经壳聚糖-咖啡因配方处理的木材的物理和机械性能
IF 2.4 3区 农林科学
European Journal of Wood and Wood Products Pub Date : 2025-04-10 DOI: 10.1007/s00107-025-02256-6
Magdalena Woźniak, Jerzy Majka, Patrycja Kwaśniewska-Sip, Tomasz Krystofiak, Barbara Lis, Edward Roszyk, Grzegorz Cofta, Izabela Ratajczak
{"title":"Correction: Physical and mechanical properties of wood treated with chitosan-caffeine formulations","authors":"Magdalena Woźniak,&nbsp;Jerzy Majka,&nbsp;Patrycja Kwaśniewska-Sip,&nbsp;Tomasz Krystofiak,&nbsp;Barbara Lis,&nbsp;Edward Roszyk,&nbsp;Grzegorz Cofta,&nbsp;Izabela Ratajczak","doi":"10.1007/s00107-025-02256-6","DOIUrl":"10.1007/s00107-025-02256-6","url":null,"abstract":"","PeriodicalId":550,"journal":{"name":"European Journal of Wood and Wood Products","volume":"83 2","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143809344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation and performance of new leaching-resistant copper sulfide-based wood preservatives 新型抗浸出硫化铜基木材防腐剂的制备和性能
IF 2.4 3区 农林科学
European Journal of Wood and Wood Products Pub Date : 2025-04-09 DOI: 10.1007/s00107-025-02236-w
Xinyi Guo, Haoliang Zhang, Fanfan Peng, Shaobo Lou, Weichao Xia, Hui Fan, Tonghua Lu, Shuaibo Han, Hui Wang, Fangli Sun
{"title":"Preparation and performance of new leaching-resistant copper sulfide-based wood preservatives","authors":"Xinyi Guo,&nbsp;Haoliang Zhang,&nbsp;Fanfan Peng,&nbsp;Shaobo Lou,&nbsp;Weichao Xia,&nbsp;Hui Fan,&nbsp;Tonghua Lu,&nbsp;Shuaibo Han,&nbsp;Hui Wang,&nbsp;Fangli Sun","doi":"10.1007/s00107-025-02236-w","DOIUrl":"10.1007/s00107-025-02236-w","url":null,"abstract":"<div><p>The aim of this study was to develop a new type of micronized copper-based wood preservative that would improve the problem of easy leaching of copper ions associated with other copper-containing wood preservatives. Micronized copper sulfide (CuS) is simple to prepare, provides good anti-fungal protection, and is leaching resistant. The stability of micronized CuS, the extent of leaching of copper ions from wood, and the effect before and after deliberate leaching on antifungal efficacy were investigated. When the retention of CuS was 4.8 kg/m<sup>3</sup>, the wood mass loss rate after infection with <i>Trametes versicolor</i>, <i>Gloeophyllum trabeum</i>, or <i>Neolentinus lepideus</i> fungi was &lt; 10%, and when the retention was 2.16 kg/m<sup>3</sup>, only 1.87% was leached. Then, micronized copper sulfide azole (CuSA) was developed to provide comprehensive protection against wood decay fungi, especially copper-resistant fungus <i>Rhodonia placenta</i>. Preservative effects and changes in the chemical and micromechanical properties of the treated wood were investigated. When the retention of CuSA was 1.92 kg/m<sup>3</sup>, the mass loss from leached wood blocks after exposure to <i>Rhodonia placenta</i> fungi was only 3.51%. There were a few significant effects on the chemical and micromechanical properties of treated wood. This study provides a new approach to the design and preparation of effective wood preservatives with less leaching.</p></div>","PeriodicalId":550,"journal":{"name":"European Journal of Wood and Wood Products","volume":"83 2","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143809231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact bending strength and structural properties of hardwood: branch versus stem 硬木的冲击弯曲强度和结构特性:枝与茎
IF 2.4 3区 农林科学
European Journal of Wood and Wood Products Pub Date : 2025-04-05 DOI: 10.1007/s00107-025-02247-7
Tobias Nenning, Johannes Konnerth, Wolfgang Gindl-Altmutter, Michael Grabner, Christian Hansmann, Lukas Eder, Sabine Bodner, Maximilian Pramreiter
{"title":"Impact bending strength and structural properties of hardwood: branch versus stem","authors":"Tobias Nenning,&nbsp;Johannes Konnerth,&nbsp;Wolfgang Gindl-Altmutter,&nbsp;Michael Grabner,&nbsp;Christian Hansmann,&nbsp;Lukas Eder,&nbsp;Sabine Bodner,&nbsp;Maximilian Pramreiter","doi":"10.1007/s00107-025-02247-7","DOIUrl":"10.1007/s00107-025-02247-7","url":null,"abstract":"<div><p>The branches of deciduous trees are optimised by nature to allow continuous adaptation and response to changing environmental conditions. As a result, the morphology and internal structure of the wood branches are often more variable than in the stem. Quantitatively, branches and stem tops represent 20–50% of the volume of the above-ground biomass of deciduous trees, which is currently under-utilized and mainly burned. To enable a higher-value application as a safe construction material, a comprehensive technological profile of branch wood is a prerequisite. Therefore, we performed single-blow impact pendulum tests in tangential wood direction on branch and stem wood samples of beech, oak, and poplar to investigate their relationship with wood density, macrostructural properties, fibre properties, and microfibril orientation of selected samples. Our results showed that the significant differences in mean impact bending strength between branch and stem for all species could not be explained by wood density. However, branch and stem wood with higher toughness are generally associated with longer fibres. Overall, branches showed higher MFA (microfibril angle) and lower fibre length compared to stems. We found that higher toughness in selected beech samples was associated with higher density and lower MFA. While oak also had a lower MFA, poplar had a higher MFA in high-toughness samples. Our empirical results provide insights into the species-specific structure-property relationships of hardwood branches, improving the understanding of their properties and variability, and potentially informing their use in structural applications.</p></div>","PeriodicalId":550,"journal":{"name":"European Journal of Wood and Wood Products","volume":"83 2","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00107-025-02247-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143784214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Value chain analysis of domestic oak wood processing in the Republic of Korea 韩国国内橡木加工价值链分析
IF 2.4 3区 农林科学
European Journal of Wood and Wood Products Pub Date : 2025-04-02 DOI: 10.1007/s00107-025-02249-5
Yoon-Seong Chang, Hee Han
{"title":"Value chain analysis of domestic oak wood processing in the Republic of Korea","authors":"Yoon-Seong Chang,&nbsp;Hee Han","doi":"10.1007/s00107-025-02249-5","DOIUrl":"10.1007/s00107-025-02249-5","url":null,"abstract":"<div><p>This study aimed to analyze an optimal utilization system to maximize the economic value of domestic oak (<i>Quercus Mongolica</i> Fisch. ex Ledeb.) log in the value chain to expand the use of wood resources and by-products. Initially, visits were made to medium-density fiberboard (MDF) factories and other companies that utilize domestic oaks to assess the size and quality of products at each stage of use, as well as the status of by-product collection and sales. Furthermore, potential alternatives to wood processing or by-product utilization were explored to facilitate the transition to a bio-economical system. Subsequently, an analysis was conducted to identify the types and quantities of wood products that could be derived from oak and evaluate the economic and environmental benefits of usage scenarios if they were adopted as new alternative resources. Finally, based on the study findings, suggestions are made for future enhancements in the domestic wood distribution process and by-product utilization system, with a focus on the application of a forest-based bioeconomy. The production of flooring boards using high-frequency vacuum drying has been highlighted as a means to increase the value-added and extend the carbon storage period by promoting its use as a long-lived product. Therefore, in addition to endeavors to enhance the price competitiveness of domestic wood products and explore ways to leverage high value-added by-products, there is a need to invest in advancing technology to maximize the value-added potential of domestic wood products.</p></div>","PeriodicalId":550,"journal":{"name":"European Journal of Wood and Wood Products","volume":"83 2","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143749065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical properties of strip-like laminations made from hardwood 硬木条状薄片的机械性能
IF 2.4 3区 农林科学
European Journal of Wood and Wood Products Pub Date : 2025-04-01 DOI: 10.1007/s00107-025-02246-8
Simon Lux, Johannes Konnerth, Andreas Neumüller
{"title":"Mechanical properties of strip-like laminations made from hardwood","authors":"Simon Lux,&nbsp;Johannes Konnerth,&nbsp;Andreas Neumüller","doi":"10.1007/s00107-025-02246-8","DOIUrl":"10.1007/s00107-025-02246-8","url":null,"abstract":"<div><p>The European Union pushes for a higher share of wood-based materials in the building sector. Consequently, making sufficient volumes of high-quality wood available is a major concern. Climate-driven forest conversion leads to an increasing share of hardwood trees in Central European forests. The use of hardwood species is currently uncommon in the building sector as hardwood species are not sufficiently covered by European standards for timber structures. In addition to this, lower material yields and increased tool wear are common in hardwood processing. Furthermore, grading hardwood species comes with major difficulties, leading to even lower yields and an assignment to strength classes worth improving, as only parts of the material can properly be assigned to strength classes. To substitute the board-based grading approach we produced a semi-finished product, “strip-like lamination” (SLL). Preselected, low-grade sawn hardwood from European beech (<i>Fagus sylvatica</i>) and oak (<i>Quercus spp.</i>) was used as raw material for the SLLs. Each lamination consists of multiple “strips”, stemming from different hardwood boards, mitigating the strength-limiting effect of various wood characteristics in these SLLs. This work provides the first comprehensive mechanical performance profile for SLLs from beech and oak including the finger joint performance. Furthermore, we show the extent of the desired homogenization of the raw material through non-destructive testing. The mechanical properties of beech SLLs exceed the requirements for European softwood strength classes. The results show great potential for SLLs in structural applications. SLLs should complement strength-graded structural timber in structural glued wood products, like glued laminated timber (GLT) and cross-laminated timber (CLT).</p></div>","PeriodicalId":550,"journal":{"name":"European Journal of Wood and Wood Products","volume":"83 2","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143749118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of a strong, mildew resistant, flame-retardant, and smoke suppressing bamboo scrimber through a sustainable method 用可持续的方法制备一种坚固、防霉、阻燃、抑烟的竹浆料
IF 2.4 3区 农林科学
European Journal of Wood and Wood Products Pub Date : 2025-03-22 DOI: 10.1007/s00107-025-02238-8
Peisheng Li, Jiayu Xu, Anbo Pan, Mingyue Jiang, Yantao Xu, Xiaochun Zhang
{"title":"Preparation of a strong, mildew resistant, flame-retardant, and smoke suppressing bamboo scrimber through a sustainable method","authors":"Peisheng Li,&nbsp;Jiayu Xu,&nbsp;Anbo Pan,&nbsp;Mingyue Jiang,&nbsp;Yantao Xu,&nbsp;Xiaochun Zhang","doi":"10.1007/s00107-025-02238-8","DOIUrl":"10.1007/s00107-025-02238-8","url":null,"abstract":"<div><p>With the rapid development of the economy and society, problems such as high resource consumption and serious environmental pollution in traditional reinforced concrete buildings are becoming increasingly prominent. Bamboo scrimber is an effective substitute for green building materials, but there are some problems such as susceptibility to mildew and poor flame retardancy, which limit its application in the building industry. In this study, the alkaline pretreatment process was used to remove some nutrients from bamboo to improve mildew resistance, and phytic acid and magnesium hydroxide were loaded on the surface of the bamboo bundle to enhance the flame retardancy. The results showed that phytic acid and magnesium hydroxide could be effectively loaded on the surface of bamboo bundles, and the mechanical strength, mildew resistance, and flame retardancy of modified bamboo scrimber (M10-PB) have been effectively improved. Compared with unmodified bamboo scrimber, the flexural strength and flexural modulus of M10-PB increased by 33.72% and 36.61% to 155.26 MPa and 14.59 GPa, respectively; the mold infection rate has decreased from 100% at 5 d to below 20% at 28 d; the limiting oxygen index of M10-PB bamboo scrimber increased by 13.2%, and the total smoke emission decreased by 54.4%. This method can effectively improve the mildew resistance, flame retardancy and smoke suppression of bamboo scrimber while maintaining high mechanical strength, which helps to promote the application of bamboo in the construction field.</p></div>","PeriodicalId":550,"journal":{"name":"European Journal of Wood and Wood Products","volume":"83 2","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143676298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deformation measurement of twisted timber beam using UAV SfM photogrammetry and a new feature extraction algorithm 基于无人机SfM摄影测量及特征提取新算法的扭曲木梁变形测量
IF 2.4 3区 农林科学
European Journal of Wood and Wood Products Pub Date : 2025-03-22 DOI: 10.1007/s00107-025-02245-9
Juan Ortiz-Sanz, Guillermo Bastos, Mariluz Gil-Docampo
{"title":"Deformation measurement of twisted timber beam using UAV SfM photogrammetry and a new feature extraction algorithm","authors":"Juan Ortiz-Sanz,&nbsp;Guillermo Bastos,&nbsp;Mariluz Gil-Docampo","doi":"10.1007/s00107-025-02245-9","DOIUrl":"10.1007/s00107-025-02245-9","url":null,"abstract":"<div><p>Drones facilitate the monitoring of large structures through feature extraction from point clouds generated through Structure-from-Motion photogrammetry. In the present study, we determined the deformation of a structural timber strip subjected to simultaneous bending and torsion. Three cameras were used. Two of them are pre-installed on the UAVs utilized, and the third is a consumer-grade Canon camera. All three were configured in flight mode. The geometry of the timber strip was generated through photogrammetry from the photos taken with each camera at a height of 1.5 m. The results were compared with the reference geometry, which was also created using the Canon camera on the ground at an average distance of 0.92 m. This reference geometry was previously validated in a preparatory project using extensometers with 1-µm precision. A Python-based algorithm was developed to automatically extract the position of the centroid and the rotation of each cross-sectional segment of the strip from UAV-based photogrammetric point clouds. Deformations measured by each of the three devices and the new algorithm are compared with actual deformation. The accuracy in measuring displacement and rotation of the centroid of strip cross-sections ranged between − 0.05 and 0.09 mm and between 0.00° and 0.24°, respectively.</p></div>","PeriodicalId":550,"journal":{"name":"European Journal of Wood and Wood Products","volume":"83 2","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00107-025-02245-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143667880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Compressive performance of laminated bamboo columns with glass fiber reinforced polymer 玻璃纤维增强聚合物叠合竹柱的抗压性能
IF 2.4 3区 农林科学
European Journal of Wood and Wood Products Pub Date : 2025-03-22 DOI: 10.1007/s00107-025-02237-9
Zhen Wang, Haitao Li, Rodolfo Lorenzo, Chaokun Hong
{"title":"Compressive performance of laminated bamboo columns with glass fiber reinforced polymer","authors":"Zhen Wang,&nbsp;Haitao Li,&nbsp;Rodolfo Lorenzo,&nbsp;Chaokun Hong","doi":"10.1007/s00107-025-02237-9","DOIUrl":"10.1007/s00107-025-02237-9","url":null,"abstract":"<div><p>This paper presents an investigation to check the feasibility of reinforcing laminated bamboo columns through the application of glass fiber reinforced polymer (GFRP) composites, with particular emphasis on examining the influence of slenderness ratio on the performance of GFRP reinforced columns. A comprehensive experimental program was conducted involving eighteen full-scale columns, which were categorized into six distinct slenderness groups. External GFRP wrapping was employed to enhance compression strength, as well as to restrain the outward local buckling deformation of the laminated bamboo column. Experimental observations revealed both compression and buckling failure modes. The results demonstrated that the implementation of GFRP reinforcement with a minimal volume fraction significantly enhanced both the load-carrying capacity and deformation ability of the laminated bamboo columns. A consistent inverse relationship was observed between the slenderness ratio and the ultimate load-carrying capacity of the specimens. To further validate and extend the experimental findings, a methodology for modeling the column specimens was developed using ABAQUS software, incorporating nonlinear analysis to simulate the behavior. The numerical simulations exhibited strong correlation with experimental results, thereby confirming the reliability and effectiveness of the proposed methods for potential similar engineering applications.</p></div>","PeriodicalId":550,"journal":{"name":"European Journal of Wood and Wood Products","volume":"83 2","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143667979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regional assessment of mold growth risk in light wood-framed wall envelope based on meteorological data-driven and neural network model 基于气象数据驱动和神经网络模型的轻型木结构围护结构霉菌生长风险区域评价
IF 2.4 3区 农林科学
European Journal of Wood and Wood Products Pub Date : 2025-03-19 DOI: 10.1007/s00107-024-02156-1
Yanyu Zhao, Xinmiao Meng, Shiyi Mei, Xudong Zhu, Juan Yang, Ying Gao
{"title":"Regional assessment of mold growth risk in light wood-framed wall envelope based on meteorological data-driven and neural network model","authors":"Yanyu Zhao,&nbsp;Xinmiao Meng,&nbsp;Shiyi Mei,&nbsp;Xudong Zhu,&nbsp;Juan Yang,&nbsp;Ying Gao","doi":"10.1007/s00107-024-02156-1","DOIUrl":"10.1007/s00107-024-02156-1","url":null,"abstract":"<div><p>Wood is a renewable material ideal for environmentally friendly buildings, but wooden building envelopes may face mold growth risks across different climates. To ensure the long-term service life of wooden buildings in China, it is imperative to evaluate the mold growth risk in each region. Nevertheless, large-scale regional assessments require significant effort and time. This study proposes a method based on meteorological data and a neural network (NN) model for regional mold risk assessment in light wood-framed wall envelopes. The NN model, comprising a one-dimensional convolutional neural network (1D-CNN) and long short-term memory (LSTM), is trained on meteorological data from the hot summer and cold winter (HSCW) region, which is one of China's five climatic regions. It is validated using simulated data and one year of field monitoring data. Finally, the model predicts time series of relative humidity and temperature with a mold index from the empirical VTT model to assess mold growth risk in the HSCW region. The validation results with simulated data show good performance, with average R<sup>2</sup> values of 0.969 and 0.984 for predicting interior wall relative humidity and temperature, respectively. However, validation with monitoring data shows a decline in performance due to real-world complexities. The results of the risk assessment indicate that the wall used in this study is commonly at risk in the HSCW region. The proposed method is suitable for assessing mold risk in walls across diverse regional climates, thereby providing tailored improvements to the hygrothermal performance of walls.</p></div>","PeriodicalId":550,"journal":{"name":"European Journal of Wood and Wood Products","volume":"83 2","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143645479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信