{"title":"Field performance of erosion control on Lamtakong dam slopes using geocell and ruzi grass cover: A case study","authors":"Nuttawut Thanasisathit , Supphanut Chuenjaidee , Panich Voottipruex , Pornkasem Jongpradist , Patara Kalayasri , Pitthaya Jamsawang","doi":"10.1016/j.geotexmem.2025.08.010","DOIUrl":"10.1016/j.geotexmem.2025.08.010","url":null,"abstract":"<div><div>This study investigates the field performance of an integrated erosion control system combining geocell reinforcement and Ruzi grass cover on 30°, 45°, and 60° slopes at Lamtakong Dam, Thailand. Simulated rainfall intensities of 100, 130, and 170 mm/h were applied to assess the effects of geocell coverage patterns and vegetation maturity on runoff and sediment transport. Results show that full geocell coverage (C100) achieved the highest erosion resistance, reducing runoff and sediment by up to 90 % and 98 %, respectively. Partial coverage (C60 and C80) also proved effective, achieving comparable reductions (RRR of 60–75 % and SRR of 65–78 %) while offering cost-saving potential. Ruzi grass alone reduced sediment concentration by up to 75 % after 8 weeks, emphasizing the importance of vegetation maturity. Discontinuous geocell layouts performed similarly to continuous ones at equivalent coverage, indicating that total coverage area, not pattern, governs performance. A multiple regression model was developed to predict sediment reduction based on geocell coverage, Ruzi grass age, slope angle, and rainfall intensity, confirming the dominant influence of geocell coverage and vegetation maturity. The findings support the integrated system as a sustainable and scalable solution for erosion-prone slopes under varying environmental conditions.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 6","pages":"Pages 1610-1622"},"PeriodicalIF":6.2,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144895742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hamza Tahir, Guillaume Stoltz, Guillaume Veylon, Laurent Peyras
{"title":"Impact of test speed on the thermo-mechanical behavior of various types of geomembranes","authors":"Hamza Tahir, Guillaume Stoltz, Guillaume Veylon, Laurent Peyras","doi":"10.1016/j.geotexmem.2025.08.002","DOIUrl":"10.1016/j.geotexmem.2025.08.002","url":null,"abstract":"<div><div>Geomembranes in hydraulic structures are often in exposed conditions; the ambient temperature can vary significantly and hence influence their mechanical behavior. To determine their tensile behavior at various temperatures, unidirectional tensile tests can be performed in temperature-controlled chambers. However, the test speeds recommended by the main standards are high. Considering the elasto-visco-plastic behavior of geomembranes, the test speed has a double effect; the first comes from the viscous component and the second comes from temperature variation, due to the self-heating of the tested specimen during test. This study aims to investigate the effect of the test speed on the mechanical behavior of various geomembranes by decoupling the viscous effect and the self-heating effect. Through various unidirectional tensile tests performed on a wide range of test speeds, from 0.01 mm/min to 500 mm/min, it was found that for various tested geomembranes (HDPE, EPDM, PVC, FPO, Bituminous), the higher the test speed, the greater the tensile force at various strain levels and the greater the change in internal temperature of the specimen. Regarding the temperature effect, it was shown that for test speeds less than or equal to 10 mm/min, no self-heating of the specimen was observed for all geomembranes.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 6","pages":"Pages 1588-1599"},"PeriodicalIF":6.2,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144893695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Shen , Nihao Wei , Kewei Fan , Wencheng Qi , Jianting Feng , Zhiqiang Lai
{"title":"Chemical-enhanced electrokinetic geosynthetics (EKG) electro-osmosis combined with vacuum preloading for consolidation and copper remediation in contaminated dredged sludge","authors":"Yang Shen , Nihao Wei , Kewei Fan , Wencheng Qi , Jianting Feng , Zhiqiang Lai","doi":"10.1016/j.geotexmem.2025.08.008","DOIUrl":"10.1016/j.geotexmem.2025.08.008","url":null,"abstract":"<div><div>Chemical-enhanced electrokinetic geosynthetics (EKG) electro-osmosis combined with vacuum preloading was employed to simultaneously consolidate and remediate copper-contaminated dredged sludge. Five chemical additives—citric acid, tartaric acid, hydrogen peroxide, rhamnolipids, and sodium chloride—were systematically evaluated via model tests. Results show that all additives improve both drainage and copper removal, with sodium chloride exhibited the enhancement in dewatering performance, while rhamnolipid achieved the highest copper removal efficiencies. Mechanistic analysis revealed that chemical additives improved sludge dewatering by enhancing pore water migration—through modifying soil structure, increasing ionic conductivity, or reducing surface tension. They also promoted copper removal by altering speciation: acidic chelating agents reduced pH and stabilized Cu<sup>2+</sup> in soluble complexes, suppressing precipitation, while in near-neutral conditions, cathodic OH<sup>−</sup> dissolved Cu(OH)<sub>2</sub> into mobile species, facilitating transport. Energy analysis confirmed that chemical-enhanced systems improved the energy efficiency of copper removal. These findings support the integrated use of EKG electro-osmosis combined with vacuum preloading, coupled with appropriate chemical agents, as a viable and energy-efficient strategy for the remediation of heavy metal-contaminated dredged sludge.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 6","pages":"Pages 1600-1609"},"PeriodicalIF":6.2,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144895741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huaxin Han , Chengzhi Xiao , Jianguang Yin , Nan Zhu
{"title":"Effect of temperature on geogrid-facing connection force and lateral earth pressure based on innovative testing method","authors":"Huaxin Han , Chengzhi Xiao , Jianguang Yin , Nan Zhu","doi":"10.1016/j.geotexmem.2025.08.007","DOIUrl":"10.1016/j.geotexmem.2025.08.007","url":null,"abstract":"<div><div>Conventional geosynthetic-reinforced soil (GRS) retaining wall design guidelines focus on the horizontal reinforcement tensile force calculated based on lateral earth pressure under constant backfill temperature, while giving insufficient attention to the actual connection mechanism between the wall facing and the reinforcement. This limitation may impact the service life of retaining walls. In this study, a novel testing method was developed to simulate the differential settlement between the backfill and the facing within walls, enabling a new approach to quantify the reinforcement-facing connection force under various temperature conditions. Test results demonstrated that this connection force significantly exceeds the measured horizontal reinforcement tensile force under high vertical stress, and the ratio tends to increase with rising temperature under the same vertical stress. Additionally, the lateral earth pressure exerted on the wall back increases with the reinforcement stiffness, but it remains lower than the Rankine active earth pressure. At low temperatures, the conventional estimation method based on Rankine theory was shown to significantly underestimate the actual connection force. The study provides insights for the modification of the current GRS wall design guidelines.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 6","pages":"Pages 1577-1587"},"PeriodicalIF":6.2,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144892107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhilang You , Jian Xu , Hua Liu , Yang Peng , Zhichao Zhang
{"title":"Laboratory evaluation of water absorption and drainage performance of a new wicking geotextile in loess-sand mixtures","authors":"Zhilang You , Jian Xu , Hua Liu , Yang Peng , Zhichao Zhang","doi":"10.1016/j.geotexmem.2025.08.003","DOIUrl":"10.1016/j.geotexmem.2025.08.003","url":null,"abstract":"<div><div>Climatic warming and humidification in Northwest China have led to frequent extreme rainfall events, triggering numerous geohazards along linear infrastructure such as highways in the Loess Plateau region. A self-developed wicking geotextile with fibers featuring an irregular cross-section (14 μm in major axis, 7 μm in minor axis) was first introduced to facilitate drainage in loess-sand mixtures, thereby enhancing the strength and stability of foundations. Capillary effect and drainage tests were conducted to evaluate its water absorption and drainage performance of loess-sand mixtures with various ratios of poorly graded sand with silt. Additionally, evaporation tests were performed to assess the evaporation rate of the wicking geotextiles under different environmental conditions, including variations in temperature and humidity. The results showed that: 1) the maximum liquid vertical wicking heights of the wicking geotextiles in loess-sand mixtures increased with both sand contents and initial water contents; 2) the evaporation rate decreased with increasing humidity, but increased with increasing temperature; 3) Under simulated extreme rainfall, the drainage efficiency of the wicking geotextile improved with greater sand content. The drainage mechanisms of the wicking geotextiles in loess-sand mixtures were analyzed based on fibers’ microstructure. This study contributes to geohazard mitigation in the Loess Plateau.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 6","pages":"Pages 1558-1576"},"PeriodicalIF":6.2,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144887224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamic properties of sand reinforced with non-woven geotextile sheets using resonant column and bender elements tests","authors":"Sandyapogu Peddaiah, Jyant Kumar","doi":"10.1016/j.geotexmem.2025.07.012","DOIUrl":"10.1016/j.geotexmem.2025.07.012","url":null,"abstract":"<div><div>This study examines an inclusion of non-woven polypropylene geotextiles sheets on dynamic properties of dry sand. Resonant column (RC), bender and extender elements (BE, EE) tests were conducted on sand reinforced with different numbers of geotextile sheets (<span><math><mrow><msub><mi>N</mi><mrow><mi>g</mi><mi>t</mi><mi>s</mi></mrow></msub></mrow></math></span>) under varying confining pressures. The inclusion of geotextile sheets significantly increases not only the shear modulus (<span><math><mrow><mi>G</mi></mrow></math></span>) but also the damping ratio (<span><math><mrow><mi>D</mi></mrow></math></span>) of the reinforced sand specimen. As compared to the data reported in literature, although geotextiles with lesser tensile strength were being employed in the current research, the percentage increases in the values of <em>G</em> were, however, found to be relatively greater. The inclusion of geotextile also leads to a reduction in the amplitude of the shear strain (<span><math><mrow><mi>γ</mi></mrow></math></span>). The values of shear and Young's moduli (<span><math><mrow><msub><mi>G</mi><mn>0</mn></msub><mo>,</mo><msub><mrow><mspace></mspace><mi>E</mi></mrow><mn>0</mn></msub></mrow></math></span>) determined respectively from BE and EE tests also confirm the improvement in moduli values for sand reinforced with geotextile sheets. The improvement in Young's modulus is found to be, however, relatively smaller. The effect of an inclusion of geotextile sheets on (i) percentage increase in <span><math><mrow><msub><mi>G</mi><mn>0</mn></msub></mrow></math></span> and percentage decrease in <span><math><mrow><msub><mi>γ</mi><mi>min</mi></msub></mrow></math></span> increases continuously with an increase in <span><math><mrow><msub><mi>σ</mi><mn>3</mn></msub></mrow></math></span>, and (iii) percentage increase in <span><math><mrow><msub><mi>D</mi><mi>min</mi></msub></mrow></math></span>, however, reduces with an increase in <span><math><mrow><msub><mi>σ</mi><mn>3</mn></msub></mrow></math></span>.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 6","pages":"Pages 1525-1543"},"PeriodicalIF":6.2,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144779381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haibo Wang , Ge Gao , Mohamed A. Meguid , Nasser Khalili , Lulu Zhang
{"title":"The role of boundary normal stiffness in the micromechanical behavior of geomembrane-sand interface: A numerical study","authors":"Haibo Wang , Ge Gao , Mohamed A. Meguid , Nasser Khalili , Lulu Zhang","doi":"10.1016/j.geotexmem.2025.07.011","DOIUrl":"10.1016/j.geotexmem.2025.07.011","url":null,"abstract":"<div><div>Three-dimensional discrete element method (DEM) is employed to investigate how boundary normal stiffness influences the shearing behavior at the soil-geomembrane interface. A robust and efficient algorithm was developed and implemented into direct shear numerical models, effectively capturing the key aspects of the sand-geomembrane interface behavior across a wide range of boundary normal stiffness values. The numerical model was validated by comparing the bulk responses of interface shear stress and volume change versus shear displacement with experimental data. At the microscale, particle displacements, rotations, contact network evolution, coordination number, redundancy factor and elastic stiffness tensor were investigated to shed light on the impact of normal stiffness on the interface response. The micromechanical insights, such as the development of higher level of geometrical and mechanical anisotropy, stronger interface interlocking to resist sliding and rolling of sand particles, and increased local density and bulk stiffness, are connected to the macroscopic response, explaining how higher boundary normal stiffness enhances interface shear strength and normal stress during shearing.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 6","pages":"Pages 1506-1524"},"PeriodicalIF":6.2,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144749443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rodrigo A. e Silva, R. Kerry Rowe, Fady B. Abdelaal
{"title":"Degradation of polyethylene geomembranes exposed to different mine tailings pore waters","authors":"Rodrigo A. e Silva, R. Kerry Rowe, Fady B. Abdelaal","doi":"10.1016/j.geotexmem.2025.07.006","DOIUrl":"10.1016/j.geotexmem.2025.07.006","url":null,"abstract":"<div><div>The chemical durability of three 1.5 mm geomembranes (GMBs) – two made from high-density polyethylene (HDPE) and one from a blended polyolefin resin – was examined over 3 years in synthetic tailings pore water solutions. The immersion solutions included a pH 4.0 solution simulating pore water from oxidized copper-zinc mine tailings (PW-4), pH 7.0 (PW-7) and 8.0 (PW-8) solutions simulating arsenic-bearing pore waters from saturated gold mine tailings, and a pH 9.5 solution (PW-9.5) simulating pore water affected by cyanide complexes and/or chemicals from a cyanidation plant. Both HDPE GMBs reached nominal failure in stress-crack resistance at 85 °C, followed by reductions in melt index and, in some cases, tensile strength. The blended GMB showed no degradation. PW-7 was the most aggressive solution in terms of degradation of mechanical properties of the HDPEs, while PW-9.5 was the most aggressive for antioxidant depletion for all three GMBs. The relative performance of the three GMBs in different tailings pore waters could not be predicted from the GMBs’ initial properties or the solutions' chemistry. Overall, results highlight the importance of conducting immersion tests for applications involving complex chemical environments.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 6","pages":"Pages 1483-1505"},"PeriodicalIF":6.2,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144749573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qingming Wang , Chao Xu , Geye Li , Panpan Shen , Chongxi Zhao
{"title":"Centrifuge modeling on the geosynthetic-reinforced soil (GRS) abutments with different combinations of reinforcement spacing and tensile stiffness","authors":"Qingming Wang , Chao Xu , Geye Li , Panpan Shen , Chongxi Zhao","doi":"10.1016/j.geotexmem.2025.07.009","DOIUrl":"10.1016/j.geotexmem.2025.07.009","url":null,"abstract":"<div><div>Three centrifuge model tests were conducted to investigate the performance of geosynthetic reinforced soil (GRS) abutments with modular block facing under localized vertical loads. This study examined the effects of different combinations of reinforcement spacing <em>S</em><sub><em>v</em></sub> and tensile stiffness <em>J</em> on the behavior of GRS abutments. In this study, river sand and woven geotextiles were used as the backfill soil and reinforcement material, respectively. Test results show that under the same ratio of <em>J</em>/<em>S</em><sub><em>v</em></sub> = 3.7, using the combination of smaller <em>S</em><sub><em>v</em></sub> and lower <em>J</em> was more effective in minimizing the beam seat settlements and the lateral facing displacements induced by localized vertical loads than the combination of larger <em>S</em><sub><em>v</em></sub> and higher <em>J</em>. Meanwhile, smaller additional vertical stresses transferred from the applied loads within the GRS abutment and smaller reinforcement tensile forces were also observed for the combination of smaller <em>S</em><sub><em>v</em></sub> and lower <em>J</em>. Furthermore, the maximum tensile forces in each layer occurred under the beam seat for the upper reinforcement layers and near the facing for the lower layers for all three tests. A more uniform distribution of the reinforcement tensile force was found for the combination of smaller <em>S</em><sub><em>v</em></sub> and lower <em>J</em>.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 6","pages":"Pages 1473-1482"},"PeriodicalIF":6.2,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144721056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jianrui Ge , Yuncheng Yuan , Haoyuan Jiang , Zhengzhong Wang , Yi Wang , Min Xiao
{"title":"Mitigating frost damage in cold region canals: performance evaluation of a two-layer geomembrane lining structure","authors":"Jianrui Ge , Yuncheng Yuan , Haoyuan Jiang , Zhengzhong Wang , Yi Wang , Min Xiao","doi":"10.1016/j.geotexmem.2025.07.008","DOIUrl":"10.1016/j.geotexmem.2025.07.008","url":null,"abstract":"<div><div>To address frost damage to canal lining structures in arid and cold regions, this study proposes the use of a two-layer composite geomembranes (TLCGs) as a frost-heaving composite lining structure. To assess the performance of the two-layer geomembrane lining structure (TLCGLS), field tests were conducted. Considering the interaction between TLCGs and lining structure and canal foundation soil, a calculation model of canal frost heave is established based on the water-heat-force coupling theory of foundation soil. The stress of canal lining with single-layer composite geomembrane (SLCG), frictionless two-layer composite geomembranes (FTLCGS), and TLCGs under frost-heaving conditions is analyzed. The results indicate that TLCGLS can enhance the temperature of canal foundation soil by 7 % and decrease the water content by 12 %, thereby effectively mitigating canal deformation by 38 %. The TLCGs cushion under the canal lining can effectively release the tangential freezing constraint, so that the lining structure has certain flexibility, so as to prevent frost damage. Therefore, the reasonable use of TLCGs with appropriate friction and the setting of flexible structural joints can prevent frost damage.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 6","pages":"Pages 1458-1472"},"PeriodicalIF":4.7,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144653662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}