{"title":"Analytical model and stress behavior of consolidated load bearing geotextile tubes","authors":"","doi":"10.1016/j.geotexmem.2024.09.003","DOIUrl":"10.1016/j.geotexmem.2024.09.003","url":null,"abstract":"<div><p>Accurately predicting stress-strain characteristics is crucial to ensuring the regulated capacity and controlled deformation of the tubes during and after construction. However, research on the shear strength of geotextile tubes under surcharge loading, especially after dewatering, is insufficient. This study proposes an analytical model with a Stress-State Boundary (SSB) and Yield Function to comprehensively describe the stress-strain behavior of Load-Bearing Geotextile Tubes (LGTs). The SSB is designed to predict the initial state of stress in the infill soil prior to load application, while the Yield Function is formulated to express the shear stress path experienced by the LGT before fabric failure. The model considers various factors that affect LGT behavior, including diverse soil mechanical parameters, nonlinear fabric stiffness, initial tension due to self-weight and principal stress axes rotation. Results show that a decrease in Poisson's ratio corresponds to an increase in failure stress. Moreover, it was demonstrated that the axial failure strain can be influenced by the geotextile linear or nonlinear behavior. Notably, the study highlights that tube height and inclination angle significantly affect the geotextile's confining effect. Beyond theoretical contributions, the analytical model serves as a valuable tool for optimizing geotextile tube design and execution, contributing to project success and longevity through enhanced structural stability.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142169054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improvements in vacuum-surcharge preloading combined with electro-osmotic consolidation on soft clayey soil with high water content","authors":"","doi":"10.1016/j.geotexmem.2024.09.004","DOIUrl":"10.1016/j.geotexmem.2024.09.004","url":null,"abstract":"<div><p>This study conducted laboratory tests on soft clayey soils to investigate the effectiveness of the combinations of vacuum-surcharge preloading and electro-osmotic treatment (EOC-VPM-SPM). To minimize the loss of vacuum pressure and mitigate clogging of the drainage system during the consolidation process, two improved methods were developed by optimizing technical characteristics and geometric layout of drainage boards. In the EOC-Alternate VPM-SPM method, alternate vacuum pressure was incorporated using two drainage boards with different lengths in the VPM system, combined with EOC to improve consolidation efficiency. In the multiple-electrodes EOC-VPM-SPM method, a new design of multiple drainage boards in a square tube layout fabricated through 3D printing was employed to provide efficient connections of the consolidation system. Furthermore, electrokinetic geosynthetics (EKG) was utilized as the cathode in the EOC system to minimize erosion and passivation of electrodes for the enhancement in consolidation efficiency. The properties of tested soils were analyzed to evaluate the feasibility of the improved methods. Test results indicated that the consolidation effects were significantly improved, with effectively mitigated clogging of the drainage system. Compared to the traditional method, the water content of the tested soil was reduced through the improved methods, resulting in increased uniformity of strength distribution.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142169053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Vibration response of closely spaced footings protected by use of rubber sheet: An in-situ investigation","authors":"","doi":"10.1016/j.geotexmem.2024.08.007","DOIUrl":"10.1016/j.geotexmem.2024.08.007","url":null,"abstract":"<div><p>It is essential to protect sensitive equipment located in the vicinity of vibration sources (VS). As the well-known method of using wave barriers is ineffective to protect facilities that are located very close to a VS, in this study the effect of a thin rubber sheet to protect a nearby foundation (NF) was assessed. This was achieved experimentally at a site using a semi-large scale machine foundation model as the VS and a similar concrete foundation as the NF. The effects of the rubber sheet position (beneath the VS and NF) and of the rubber sheet thickness (6, 12, 18 and 24 mm) were assessed within the vibration frequency range 10–70 Hz and at various NF to VS distances (Distance/Foundation Width = 1 to 10). The testing illustrates that, by increasing the rubber sheet thickness beneath the VS/NF, there is a consequential resonant response frequency reduction at the NF. Moreover, it was found that placing the rubber sheet beneath the VS is more efficient at reducing the NF's resonant amplitude while placing the rubber sheet beneath the NF is more effective in protecting the NF from the resonant frequency variation. This is due to the dominance of the VS's resonant frequency.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142163349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unveiling the reinforcement benefits of innovative textured geogrids","authors":"","doi":"10.1016/j.geotexmem.2024.08.008","DOIUrl":"10.1016/j.geotexmem.2024.08.008","url":null,"abstract":"<div><p>The smooth surface texture of the commercially available geogrids limits the shear strength mobilization at the interfaces. This study presents the design, manufacturing, and interface performance evaluation of innovative textured geogrids. Geogrids with square, triangular, and hexagonal apertures with and without inherent surface texture were manufactured through additive manufacturing (3D printing) technique, using PLA (Poly Lactic Acid) filament. The texture includes elevated pins of 3 mm height at the junctions and inherent diamond pattern of 1 mm height on the ribs. The individual and combined effects of surface texture and aperture shape on the stress–displacement relationship, dilation angle, and the thickness of shear zone are quantified using large-scale direct shear tests and Particle Image Velocimetry (PIV) analysis. Results showed that the textured geogrid with hexagonal aperture has exhibited the maximum interface coefficient of 0.96 with sand followed by the geogrids with triangular and square apertures. Irrespective of the aperture shape, provision of the surface texture resulted in an overall increase of interface shear strength by more than 13%. Further, PIV analysis revealed that the shear zone is 25% thicker for textured geogrids of different aperture shapes, suggesting higher interlocking and passive resistance offered by their textured surfaces.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142163350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tensile behavior of needle-punched nonwoven geotextiles based on in-situ X-ray computed tomography and numerical simulation","authors":"","doi":"10.1016/j.geotexmem.2024.08.004","DOIUrl":"10.1016/j.geotexmem.2024.08.004","url":null,"abstract":"<div><p>There are situations where geotextiles are subjected to uniaxial tensile strain, which may result in noticeable variations in their filtration performance. This study accordingly investigated the behaviors of needle-punched nonwoven geotextiles during tensile testing using in-situ X-ray computed tomography. Furthermore, a numerical analysis of the variation in pore size characteristics was performed by establishing a geotextile model based on the web formation and bonding manufacturing process. The pore size and fiber orientation distributions were subsequently investigated and a model for the changes in the pore characteristics was established and validated. With increasing tension strain in the machine direction, the pore throat size distribution curve exhibited an overall shift towards larger sizes, and the characteristic pore sizes ranging from 10% to 98% either initially decreased, then increased or consistently increased. Furthermore, the fiber distribution was predominantly within the geotextile plane along the machine direction, and as the strain increased, the fibers stretched and aligned along the direction of the tensile load along the machine direction. Finally, the experimental findings of this study and relevant test results from the literature were thoroughly interpreted. The numerical model align well with the actual changes in pore size characteristics observed under tensile strain.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142088214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research on the aging mechanism of polypropylene nonwoven geotextiles under simulated heavy metal aging scenarios","authors":"","doi":"10.1016/j.geotexmem.2024.08.006","DOIUrl":"10.1016/j.geotexmem.2024.08.006","url":null,"abstract":"<div><p>We conducted accelerated aging experiments on two types of polypropylene (PP) nonwoven geotextiles (filament geotextile and staple fiber geotextile), immersing them in five different simulated liquids at temperatures of 25 °C, 55 °C, and 85 °C for 200 days. At 85 °C and a pH of 1, the tensile strength and elongation at break of PP filament materials decreased by 95% and 86%, respectively. The presence of heavy metals(arsenic and cadmium), speeds up the aging process in both types of PP geotextiles. Under identical conditions, these heavy metals can increase the loss of tensile strength in geotextiles by more than 7% in 200 days. Increases in temperature, acidic environment, and heavy metal concentration all contribute to faster aging of these geotextiles. Although filament geotextiles exhibit higher tensile strength and elongation at break, staple fiber geotextiles show a lower rate of tensile strength loss during aging and better maintain their tensile strength in high-temperature acidic conditions. During the aging process, cross-linking and recrystallization occur, both of which control the aging rate and the formation of microplastics.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142084130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analytical model of three-dimensional concentric ellipsoidal soil arching in geosynthetic-reinforced pile-supported embankments","authors":"","doi":"10.1016/j.geotexmem.2024.08.005","DOIUrl":"10.1016/j.geotexmem.2024.08.005","url":null,"abstract":"<div><p>The geosynthetic-reinforced pile-supported (GRPS) embankment is an effective method for improving soft ground, widely adopted in engineering applications. In this paper, a concentric ellipsoidal soil arching model was proposed to describe the stress distribution within the GRPS embankment. An analytical solution for soil arching efficacy was derived by solving the loads acting on the pile caps and geosynthetics under piles arranged in a squared pattern. Subsequently, finite difference models were established to verify the accuracy of the derived analytical solution. Meanwhile, four field tests were introduced to validate the analytical model. Finally, parametric studies were conducted on the concentric ellipsoidal soil arching model, considering parameters such as the embankment height, the pile spacing, the pile cap width, the unit weight, and the friction angle of fill soil.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142084133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamic response and damage of pile-geogrid composite reinforced high-speed railway subgrade under seismic actions","authors":"","doi":"10.1016/j.geotexmem.2024.08.003","DOIUrl":"10.1016/j.geotexmem.2024.08.003","url":null,"abstract":"<div><p>In this study, the dynamic response and damage mode of a pile-geogrid composite reinforced high-speed railway subgrade under seismic action were investigated based on a unidirectional shaking table test. Various seismic waves were applied to the subgrade, allowing for an analysis of acceleration, dynamic soil pressure, displacement, and strain responses. The displacement field of the subgrade was visualized using particle image velocimetry (PIV). The study shows that changes in peak ground acceleration (PGA) amplification factors become evident with height due to the presence of geogrid layers. The increase in peak ground motion causes a redistribution of dynamic soil pressures inside the subgrade. The transverse and longitudinal ribs of the geogrids provide an “anchoring effect”. The peak strain of the piles in the center is greater than that of the piles on the sides. The direction of soil particle displacement is closely related to the damage patterns observed in the subgrade. Damage begins to occur once the peak ground motion exceeds 0.4 g, characterized by collapse at the bottom of the subgrade.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142050077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Parameters affecting performance of fully instrumented model testing of strip footings on geocell-reinforced soils","authors":"","doi":"10.1016/j.geotexmem.2024.08.002","DOIUrl":"10.1016/j.geotexmem.2024.08.002","url":null,"abstract":"<div><p>A thorough study was conducted to assess the performance of the strip footing reinforced with geocells in sand, focusing on understanding the enhancement effects and geocell reinforcement mechanisms. Critical factors such as geocell modulus, height, soil relative density and load eccentricity were examined through fully instrumented model tests. Measurements included surface displacement profiles, strains on the geocell layer, subsurface pressure distribution and other relevant parameters. Results revealed that the strip footing on geocell-reinforced sand beds exhibited better performance compared to those on unreinforced soil, characterized by increased load-carrying capacity and reduced settlements. Notably, stiffer geocells improved performance significantly, with a 40% higher modulus enhancing the bearing pressure by up to 25%, due to better confinement and anchorage effects. Conversely, geocells with a lower modulus demonstrated more effective vertical stress distribution. Furthermore, increased geocell height moderately enhanced footing performance by improving confinement, although wall buckling under eccentric loading limited major gains. Dense soils under centric loading exhibited up to a 20% better improvement in bearing pressure than loose soils due to higher strain mobilization within the geocell layer. These findings highlight the crucial role of geocell and soil properties, as well as loading conditions, in optimizing reinforcement effects for strip footings.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142022292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Laboratory evaluation of wicking geotextile for moisture reduction in silty sands at different fines contents","authors":"","doi":"10.1016/j.geotexmem.2024.08.001","DOIUrl":"10.1016/j.geotexmem.2024.08.001","url":null,"abstract":"<div><p>The effect of fines content on the performance of the wicking geotextile is not clear. This study developed a simple moisture reduction test method to quantify the effectiveness of the wicking geotextile in reducing moisture in silty sands at four different fines contents and four different waiting periods. The sand was prepared at an initial moist condition based on its average field moisture capacity. A wicking or non-wicking woven geotextile was placed in the middle of a soil column. The effect of a geotextile on the moisture content of the sand was evaluated by measuring their gravimetric moisture contents at different distances from the geotextile at different times. Test results show that the amount of moisture reduced by the wicking geotextile decreased with the content of fines in the silty sand. On the contrary, the non-wicking geotextile obstructed water flow, hence moisture accumulated on it. The moisture content profile in the soil column indicated the influence zone by the wicking geotextile in the silty sand, which depended on the fines content. The percent of soil moisture content reduction by the wicking geotextile identified the limit of the fines content for the effectiveness of the wicking geotextile.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S026611442400089X/pdfft?md5=ea64217483be99114d11193dcfdf7960&pid=1-s2.0-S026611442400089X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142011638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}