Investigation on dewatering and reinforcement of dredged clay treated with SAP and PVD under vacuum preloading

IF 4.7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Yupeng Cao , Xinzhuang Cui , Zhehao Qiu , Jie Yin , Pengfei Qi , Shuo Sun
{"title":"Investigation on dewatering and reinforcement of dredged clay treated with SAP and PVD under vacuum preloading","authors":"Yupeng Cao ,&nbsp;Xinzhuang Cui ,&nbsp;Zhehao Qiu ,&nbsp;Jie Yin ,&nbsp;Pengfei Qi ,&nbsp;Shuo Sun","doi":"10.1016/j.geotexmem.2025.07.004","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the dewatering and reinforcement performance of high-water-content dredged slurry using vacuum preloading combined with superabsorbent polymer (SAP) as a flocculant. Preliminary sedimentation experiments were conducted to compare the dewatering performance of different flocculants, and SAP was identified as the most effective additive for enhancing sedimentation. Laboratory vacuum preloading model tests were conducted on dredged clay treated with SAP and prefabricated vertical drain (PVD), to evaluate the effectiveness of SAP in enhancing the dewatering process. Results show that SAP enhances vacuum efficiency, leading to higher and faster vacuum pressure stabilization near the PVD. SAP-treated samples exhibited more rapid pore water pressure dissipation and accelerated water content reduction, particularly in the early stages. Post-treatment water content increased with distance from the PVD, but SAP improved overall drainage uniformity. Vane shear strength decreased with distance from the PVD but remained higher in SAP-treated samples, showing a linear correlation with normalized water content. SAP also influenced soil column formation, expanding its effective radius and reducing stabilization time. Two quantitative models were developed to predict shear strength and soil column radius variations under vacuum preloading with and without SAP. The radius of the soil column formed during vacuum preloading varied with depth, decreasing towards the bottom and increasing towards the surface. These findings provide valuable insights for optimizing vacuum preloading in dredged material treatment and soft soil improvement.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 6","pages":"Pages 1407-1422"},"PeriodicalIF":4.7000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026611442500086X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the dewatering and reinforcement performance of high-water-content dredged slurry using vacuum preloading combined with superabsorbent polymer (SAP) as a flocculant. Preliminary sedimentation experiments were conducted to compare the dewatering performance of different flocculants, and SAP was identified as the most effective additive for enhancing sedimentation. Laboratory vacuum preloading model tests were conducted on dredged clay treated with SAP and prefabricated vertical drain (PVD), to evaluate the effectiveness of SAP in enhancing the dewatering process. Results show that SAP enhances vacuum efficiency, leading to higher and faster vacuum pressure stabilization near the PVD. SAP-treated samples exhibited more rapid pore water pressure dissipation and accelerated water content reduction, particularly in the early stages. Post-treatment water content increased with distance from the PVD, but SAP improved overall drainage uniformity. Vane shear strength decreased with distance from the PVD but remained higher in SAP-treated samples, showing a linear correlation with normalized water content. SAP also influenced soil column formation, expanding its effective radius and reducing stabilization time. Two quantitative models were developed to predict shear strength and soil column radius variations under vacuum preloading with and without SAP. The radius of the soil column formed during vacuum preloading varied with depth, decreasing towards the bottom and increasing towards the surface. These findings provide valuable insights for optimizing vacuum preloading in dredged material treatment and soft soil improvement.
真空预压下SAP和PVD处理的挖泥脱水加固研究
研究了真空预压结合高吸水性聚合物(SAP)作为絮凝剂对高含水率疏浚浆的脱水增强性能。通过初步沉降试验,比较了不同絮凝剂的脱水性能,确定SAP是最有效的絮凝剂。通过实验室真空预压模型试验,对SAP和预制垂直排水管(PVD)处理的疏浚粘土进行了试验,以评价SAP对疏浚粘土脱水过程的改善效果。结果表明,SAP提高了真空效率,使得PVD附近的真空压力稳定速度更快。sap处理的样品表现出更快的孔隙水压力消散和加速的含水量降低,特别是在早期阶段。处理后的含水率随着与PVD距离的增加而增加,但SAP改善了整体排水均匀性。叶片抗剪强度随着与PVD的距离而降低,但在经过sap处理的样品中保持较高,与归一化含水量呈线性相关。SAP还影响了土柱的形成,扩大了有效半径,缩短了稳定时间。建立了两个定量模型来预测真空预压和不加SAP下土柱抗剪强度和半径的变化。真空预压形成的土柱半径随深度变化,向底部减小,向表面增大。这些研究结果为疏浚材料处理和软土改良中真空预压的优化提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geotextiles and Geomembranes
Geotextiles and Geomembranes 地学-地球科学综合
CiteScore
9.50
自引率
21.20%
发文量
111
审稿时长
59 days
期刊介绍: The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident. Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信