Journal of Approximation Theory最新文献

筛选
英文 中文
Localization for random CMV matrices 随机 CMV 矩阵的定位
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-01-05 DOI: 10.1016/j.jat.2023.106008
Xiaowen Zhu
{"title":"Localization for random CMV matrices","authors":"Xiaowen Zhu","doi":"10.1016/j.jat.2023.106008","DOIUrl":"10.1016/j.jat.2023.106008","url":null,"abstract":"<div><p>We prove Anderson localization (AL) and dynamical localization in expectation (EDL, also known as strong dynamical localization) for random CMV matrices for arbitrary distribution of i.i.d. Verblunsky coefficients.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"298 ","pages":"Article 106008"},"PeriodicalIF":0.9,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139396463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comonotone approximation of periodic functions 周期函数的 Comonotone 近似值
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-01-05 DOI: 10.1016/j.jat.2024.106015
D. Leviatan , M.V. Shchehlov , I.O. Shevchuk
{"title":"Comonotone approximation of periodic functions","authors":"D. Leviatan ,&nbsp;M.V. Shchehlov ,&nbsp;I.O. Shevchuk","doi":"10.1016/j.jat.2024.106015","DOIUrl":"10.1016/j.jat.2024.106015","url":null,"abstract":"<div><p>Let <span><math><mover><mrow><mi>C</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> be the space of continuous <span><math><mrow><mn>2</mn><mi>π</mi></mrow></math></span>-periodic functions <span><math><mi>f</mi></math></span>, endowed with the uniform norm <span><math><mrow><mo>‖</mo><mi>f</mi><mo>‖</mo><mo>≔</mo><msub><mrow><mo>max</mo></mrow><mrow><mi>x</mi><mo>∈</mo><mi>R</mi></mrow></msub><mrow><mo>|</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow></math></span>, and denote by <span><math><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mi>m</mi></mrow></msub><mrow><mo>(</mo><mi>f</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span>, the <span><math><mi>m</mi></math></span>th modulus of smoothness of <span><math><mi>f</mi></math></span>. Denote by <span><math><msup><mrow><mover><mrow><mi>C</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>r</mi></mrow></msup></math></span>, the subspace of <span><math><mi>r</mi></math></span><span> times continuously differentiable functions </span><span><math><mrow><mi>f</mi><mo>∈</mo><mover><mrow><mi>C</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow></math></span>, and let <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span>, be the set of trigonometric polynomials </span><span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of degree <span><math><mrow><mo>&lt;</mo><mi>n</mi></mrow></math></span>. If <span><math><mrow><mi>f</mi><mo>∈</mo><msup><mrow><mover><mrow><mi>C</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>r</mi></mrow></msup></mrow></math></span>, has <span><math><mrow><mn>2</mn><mi>s</mi></mrow></math></span>, <span><math><mrow><mi>s</mi><mo>≥</mo><mn>1</mn></mrow></math></span><span>, extremal points in </span><span><math><mrow><mo>(</mo><mo>−</mo><mi>π</mi><mo>,</mo><mi>π</mi><mo>]</mo></mrow></math></span>, denote by <span><math><mrow><msubsup><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow><mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></msubsup><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mo>≔</mo><munder><mrow><mo>inf</mo></mrow><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>:</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup><msubsup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>≥</mo><mn>0</mn></mrow></munder><mo>‖</mo><mi>f</mi><mo>−</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>‖</mo><mo>,</mo></mrow></math></span> the error of its best comonotone approximation. We prove, that if <span><math><mrow><mi>f</mi><mo>∈</mo><msup><mrow><mover><mrow><mi>C</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>r</mi></mrow></msup></mrow></math></span>, then for either <span><math><mrow><mi>m</mi><mo>=</mo><mn>1</mn></mrow></math></span>, or <span><math><mrow><mi>m</mi><mo>=</mo><mn>2<","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"299 ","pages":"Article 106015"},"PeriodicalIF":0.9,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139101849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polynomial approximation on disjoint segments and amplification of approximation 不相交线段上的多项式逼近和逼近放大
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-01-05 DOI: 10.1016/j.jat.2023.106010
Yu. Malykhin , K. Ryutin
{"title":"Polynomial approximation on disjoint segments and amplification of approximation","authors":"Yu. Malykhin ,&nbsp;K. Ryutin","doi":"10.1016/j.jat.2023.106010","DOIUrl":"10.1016/j.jat.2023.106010","url":null,"abstract":"<div><p><span>We construct explicit easily implementable polynomial approximations of sufficiently high accuracy for locally constant functions on the union of disjoint segments (see </span><span>(1)</span><span><span>). This problem has important applications in several areas of numerical analysis, complexity theory, </span>quantum algorithms, etc. The one, most relevant for us, is the amplification of approximation method: it allows to construct approximations of higher degree </span><span><math><mi>M</mi></math></span><span> and better accuracy from the approximations of degree </span><span><math><mi>m</mi></math></span>.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"298 ","pages":"Article 106010"},"PeriodicalIF":0.9,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139102000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Onesided, intertwining, positive and copositive polynomial approximation with interpolatory constraints 带内插约束的单边、交织、正多项式和共正多项式近似法
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-01-04 DOI: 10.1016/j.jat.2023.106012
German Dzyubenko , Kirill A. Kopotun
{"title":"Onesided, intertwining, positive and copositive polynomial approximation with interpolatory constraints","authors":"German Dzyubenko ,&nbsp;Kirill A. Kopotun","doi":"10.1016/j.jat.2023.106012","DOIUrl":"10.1016/j.jat.2023.106012","url":null,"abstract":"<div><p>Given <span><math><mrow><mi>k</mi><mo>∈</mo><mi>N</mi></mrow></math></span>, a nonnegative function <span><math><mrow><mi>f</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>r</mi></mrow></msup><mrow><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></mrow></mrow></math></span>, <span><math><mrow><mi>r</mi><mo>≥</mo><mn>0</mn></mrow></math></span>, an arbitrary finite collection of points <span><math><mrow><msub><mrow><mrow><mo>{</mo><mrow><msub><mrow><mi>α</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow><mo>}</mo></mrow></mrow><mrow><mi>i</mi><mo>∈</mo><mi>J</mi></mrow></msub><mo>⊂</mo><mrow><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></mrow></mrow></math></span><span>, and a corresponding collection of nonnegative integers </span><span><math><msub><mrow><mrow><mo>{</mo><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow><mo>}</mo></mrow></mrow><mrow><mi>i</mi><mo>∈</mo><mi>J</mi></mrow></msub></math></span> with <span><math><mrow><mn>0</mn><mo>≤</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≤</mo><mi>r</mi></mrow></math></span>, <span><math><mrow><mi>i</mi><mo>∈</mo><mi>J</mi></mrow></math></span>, is it true that, for sufficiently large <span><math><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></math></span>, there exists a polynomial <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of degree <span><math><mi>n</mi></math></span> such that</p><p>(i) <span><math><mrow><mrow><mo>|</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>≤</mo><mi>c</mi><msubsup><mrow><mi>ρ</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msub><mrow><mi>ω</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>f</mi></mrow><mrow><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></mrow></msup><mo>,</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>;</mo><mrow><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></mrow><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>x</mi><mo>∈</mo><mrow><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></mrow></mrow></math></span>, where <span><math><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>≔</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><msqrt><mrow><mn>1</mn><mo>−</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt><mo>+</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span> and <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> is the classical <span><math><mi>k</mi></math></span>th modulus of smoothness.</p><p>(ii) <span><math><mrow><msup><mrow><mi>P</mi></mrow><mrow><mrow","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"299 ","pages":"Article 106012"},"PeriodicalIF":0.9,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139093119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Is hyperinterpolation efficient in the approximation of singular and oscillatory functions? 超插值是否能有效逼近奇异函数和振荡函数?
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-01-04 DOI: 10.1016/j.jat.2023.106013
Congpei An , Hao-Ning Wu
{"title":"Is hyperinterpolation efficient in the approximation of singular and oscillatory functions?","authors":"Congpei An ,&nbsp;Hao-Ning Wu","doi":"10.1016/j.jat.2023.106013","DOIUrl":"10.1016/j.jat.2023.106013","url":null,"abstract":"<div><p><span>Singular and oscillatory functions play a crucial role in various applications, and their approximation is crucial for solving applied mathematics problems efficiently. Hyperinterpolation is a discrete projection method approximating functions with the </span><span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span> orthogonal projection coefficients obtained by numerical integration. However, this approach may be inefficient for approximating singular and oscillatory functions, requiring a large number of integration points to achieve satisfactory accuracy. To address this issue, we propose a new approximation scheme in this paper, called efficient hyperinterpolation, which leverages the product-integration methods to attain the desired accuracy with fewer numerical integration points than the original scheme. We provide theorems that explain the superiority of efficient hyperinterpolation over the original scheme in approximating such functions belonging to </span><span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>, <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, and continuous function spaces, respectively, and demonstrate through numerical experiments on the interval and the sphere that our approach outperforms the original method in terms of accuracy when using a limited number of integration points.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"299 ","pages":"Article 106013"},"PeriodicalIF":0.9,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139092666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On some identities for confluent hypergeometric functions and Bessel functions 关于汇合超几何函数和贝塞尔函数的一些同义词
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-01-03 DOI: 10.1016/j.jat.2023.106014
Yoshitaka Okuyama
{"title":"On some identities for confluent hypergeometric functions and Bessel functions","authors":"Yoshitaka Okuyama","doi":"10.1016/j.jat.2023.106014","DOIUrl":"10.1016/j.jat.2023.106014","url":null,"abstract":"<div><p>Mathematical functions<span>, which often appear in mathematical analysis, are referred to as special functions and have been studied over hundreds of years. Many books and dictionaries are available that describe their properties and serve as a foundation of current science. In this paper, we find a new integral representation of the Whittaker function of the first kind and show a relevant summation formula for Kummer’s confluent hypergeometric functions. We also perform the specifications of our identities to link to known and new results.</span></p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"298 ","pages":"Article 106014"},"PeriodicalIF":0.9,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139094239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Onesided Korovkin approximation 单侧科洛夫金近似
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-01-03 DOI: 10.1016/j.jat.2023.106011
Michele Campiti
{"title":"Onesided Korovkin approximation","authors":"Michele Campiti","doi":"10.1016/j.jat.2023.106011","DOIUrl":"10.1016/j.jat.2023.106011","url":null,"abstract":"<div><p>In this paper we study in detail some characterizations of Korovkin closures and we also introduce the notions of onesided upper and lower Korovkin closures. We provide some complete characterizations of these new closures which separate the roles of approximating functions in a Korovkin system. We also present some new characterizations of the classical Korovkin closure in spaces of integrable functions. Again we can introduce and characterize the upper and lower Korovkin closures. Finally, we provide some examples which justify the interest in these new closures.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"298 ","pages":"Article 106011"},"PeriodicalIF":0.9,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021904523001491/pdfft?md5=c52ebe4199164b358a170c0ce8a2ccd0&pid=1-s2.0-S0021904523001491-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139094301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protein Carbonyl, Lipid Peroxidation, Glutathione and Enzymatic Antioxidant Status in Male Wistar Brain Sub-regions After Dietary Copper Deficiency. 饮食缺铜后雄性 Wistar 脑亚区域的蛋白质羰基、脂质过氧化、谷胱甘肽和酶抗氧化状态
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-01-01 Epub Date: 2022-10-27 DOI: 10.1007/s12291-022-01093-1
Ankita Rajendra Kurup, Neena Nair
{"title":"Protein Carbonyl, Lipid Peroxidation, Glutathione and Enzymatic Antioxidant Status in Male Wistar Brain Sub-regions After Dietary Copper Deficiency.","authors":"Ankita Rajendra Kurup, Neena Nair","doi":"10.1007/s12291-022-01093-1","DOIUrl":"10.1007/s12291-022-01093-1","url":null,"abstract":"<p><p>Copper a quintessential transitional metal is required for development and function of normal brain and its deficiency has been associated with impairments in brain function. The present study investigates the effects of dietary copper deficiency on brain sub-regions of male Wistar rats for 2-, 4- and 6-week. Pre-pubertal rats were divided into four groups: negative control (NC), copper control (CC), pairfed (PF) and copper deficient (CD). In brain sub regions total protein concentration, glutathione concentration and Cu-Zn SOD activity were down regulated after 2-, 4- and 6 weeks compared to controls and PF groups. Significant increase in brain sub regions was observed in protein carbonyl and lipid peroxidation concentration as well as total SOD, Mn SOD and catalase activities after 2-, 4- and 6 weeks of dietary copper deficiency. Experimental evidences indicate that impaired copper homeostasis has the potential to generate reactive oxygen species enhancing the susceptibility to oxidative stress by inducing up- and down-regulation of non-enzymatic and enzymatic profile studied in brain sub regions causing loss of their normal function which can consequently lead to deterioration of cell structure and death if copper deficiency is prolonged.</p>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"2 1","pages":"73-82"},"PeriodicalIF":0.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10784247/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74702717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chebyshev unions of planes, and their approximative and geometric properties 平面的切比雪夫联合及其近似和几何特性
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2023-12-30 DOI: 10.1016/j.jat.2023.106009
A.R. Alimov , I.G. Tsar’kov
{"title":"Chebyshev unions of planes, and their approximative and geometric properties","authors":"A.R. Alimov ,&nbsp;I.G. Tsar’kov","doi":"10.1016/j.jat.2023.106009","DOIUrl":"10.1016/j.jat.2023.106009","url":null,"abstract":"<div><p><span>We study approximative and geometric properties of Chebyshev sets composed of at most countably many planes (i.e., closed affine subspaces). We will assume that the union of planes is irreducible, i.e., no plane in this union contains another plane from the union. We show, in particular, that if a Chebyshev subset </span><span><math><mi>M</mi></math></span><span> of a Banach space </span><span><math><mi>X</mi></math></span> consists of at least two planes, then it is not <span><math><mi>B</mi></math></span>-connected (i.e., its intersection with some closed ball is disconnected) and is not <span><math><mover><mrow><mi>B</mi></mrow><mrow><mo>̊</mo></mrow></mover></math></span>-complete. We also verify that, in reflexive <span><math><mrow><mo>(</mo><mi>CLUR</mi><mo>)</mo></mrow></math></span>-spaces (and, in particularly, in complete uniformly convex spaces), a set composed of countably many planes is not a Chebyshev set. For finite unions, we show that any finite union of planes (involving at least two planes) is not a Chebyshev set for any norm on the space. Several applications of our results in the spaces <span><math><mrow><mi>C</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup></math></span> are also given.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"298 ","pages":"Article 106009"},"PeriodicalIF":0.9,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139094199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An asymptotic development of the Poisson integral for Laguerre polynomial expansions 拉盖尔多项式展开式泊松积分的渐近发展
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2023-12-02 DOI: 10.1016/j.jat.2023.106007
Ulrich Abel
{"title":"An asymptotic development of the Poisson integral for Laguerre polynomial expansions","authors":"Ulrich Abel","doi":"10.1016/j.jat.2023.106007","DOIUrl":"https://doi.org/10.1016/j.jat.2023.106007","url":null,"abstract":"<div><p><span>The purpose of this paper is the study of the rate of convergence of Poisson integrals for Laguerre expansions. The convergence of partial sums of Fourier series of functions in </span><span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span><span> spaces was studied, for several classes of orthogonal polynomials. In the Laguerre case Askey and Waigner proved convergence for functions </span><span><math><mrow><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mfenced><mrow><mn>0</mn><mo>,</mo><mo>+</mo><mi>∞</mi></mrow></mfenced></mrow></math></span> with <span><math><mrow><mn>4</mn><mo>/</mo><mn>3</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mn>4</mn></mrow></math></span>. In this paper we deal with the Poisson integral <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>r</mi></mrow></msub><mi>f</mi></mrow></math></span>\u0000<span><math><mfenced><mrow><mn>0</mn><mo>&lt;</mo><mi>r</mi><mo>&lt;</mo><mn>1</mn></mrow></mfenced></math></span><span> which arises by applying Abel’s summation method to the Laguerre expansion of the function </span><span><math><mi>f</mi></math></span><span>. About 50 years ago, Muckenhoupt intensively studied the Poisson integral for the Laguerre and Hermite polynomials. Among other things he proved pointwise convergence<span>, the convergence by norm, and that the Poisson integral is a contraction mapping in </span></span><span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mfenced><mrow><mn>0</mn><mo>,</mo><mi>∞</mi></mrow></mfenced></mrow></math></span>. Toczek and Wachnicki gave a Voronovskaja-type theorem by calculating the limit <span><math><mrow><msup><mrow><mfenced><mrow><mn>1</mn><mo>−</mo><mi>r</mi></mrow></mfenced></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mfenced><mrow><mfenced><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>r</mi></mrow></msub><mi>f</mi></mrow></mfenced><mfenced><mrow><mi>x</mi></mrow></mfenced><mo>−</mo><mi>f</mi><mfenced><mrow><mi>x</mi></mrow></mfenced></mrow></mfenced></mrow></math></span> as <span><math><mrow><mi>r</mi><mo>→</mo><msup><mrow><mn>1</mn></mrow><mrow><mo>−</mo></mrow></msup></mrow></math></span>, provided that <span><math><mrow><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msup><mfenced><mrow><mi>x</mi></mrow></mfenced></mrow></math></span> exists. We generalize this formula by deriving a complete asymptotic development. All its coefficients are explicitly given in a concise form. As an application we apply extrapolation methods in order to improve the rate of convergence of <span><math><mrow><mfenced><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>r</mi></mrow></msub><mi>f</mi></mrow></mfenced><mfenced><mrow><mi>x</mi></mrow></mfenced></mrow></math></span> as <span><math><mrow><mi>r</mi><mo>→</mo><msup><mrow><mn>1</mn></mrow><mrow><mo>−</mo></mrow></msup></mrow></math></span>.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"298 ","pages":"Article 106007"},"PeriodicalIF":0.9,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138501441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信