Journal of Approximation Theory最新文献

筛选
英文 中文
Log-concavity of B-splines B 样条的对数凹性
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-04-04 DOI: 10.1016/j.jat.2024.106042
Michael S. Floater
{"title":"Log-concavity of B-splines","authors":"Michael S. Floater","doi":"10.1016/j.jat.2024.106042","DOIUrl":"https://doi.org/10.1016/j.jat.2024.106042","url":null,"abstract":"<div><p>Curry and Schoenberg showed that a B-spline is log-concave in its support by applying Brunn’s theorem to a simplex. In this note we provide an alternative, ‘analytic’ proof of the log-concave property using only recursion formulas for B-splines and their first and second derivatives.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"300 ","pages":"Article 106042"},"PeriodicalIF":0.9,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021904524000285/pdfft?md5=e7cbce1cee37c3e76009eab70b3d59a1&pid=1-s2.0-S0021904524000285-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140540730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weighted estimates for Hermite pseudo-multipliers with rough symbols 带有粗糙符号的赫尔墨特伪乘法器的加权估计值
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-04-04 DOI: 10.1016/j.jat.2024.106043
Fu Ken Ly
{"title":"Weighted estimates for Hermite pseudo-multipliers with rough symbols","authors":"Fu Ken Ly","doi":"10.1016/j.jat.2024.106043","DOIUrl":"https://doi.org/10.1016/j.jat.2024.106043","url":null,"abstract":"<div><p>We introduce a class of rough symbols for pseudo-multipliers for Hermite expansions and obtain <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> and weighted <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> estimates. These symbols generalise the class of rough symbols introduced by Kenig–Staubach.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"300 ","pages":"Article 106043"},"PeriodicalIF":0.9,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021904524000297/pdfft?md5=fa08028486fb2973a12d793b81945cd7&pid=1-s2.0-S0021904524000297-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140550901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonlinear approximation of high-dimensional anisotropic analytic functions 高维各向异性分析函数的非线性逼近
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-03-13 DOI: 10.1016/j.jat.2024.106040
Diane Guignard , Peter Jantsch
{"title":"Nonlinear approximation of high-dimensional anisotropic analytic functions","authors":"Diane Guignard ,&nbsp;Peter Jantsch","doi":"10.1016/j.jat.2024.106040","DOIUrl":"https://doi.org/10.1016/j.jat.2024.106040","url":null,"abstract":"<div><p>Motivated by nonlinear approximation results for classes of parametric partial differential equations (PDEs), we seek to better understand so-called library approximations to analytic functions of countably infinite number of variables. Rather than approximating a function of interest by a single space, a library approximation uses a collection of spaces and the best space may be chosen for any point in the domain. In the setting of this paper, we use a specific library which consists of local Taylor approximations on sufficiently small rectangular subdomains of the (rescaled) parameter domain <span><math><mrow><mi>Y</mi><mo>≔</mo><msup><mrow><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow><mrow><mi>N</mi></mrow></msup></mrow></math></span>. When the function of interest is the solution of a certain type of parametric PDE, recent results (Bonito et al., 2021 <span>[4]</span>) prove an upper bound on the number of spaces required to achieve a desired target accuracy. In this work, we prove a similar result for a more general class of functions with anisotropic analyticity, namely the class introduced in Bonito et al. (2021) <span>[5]</span>. In this way we show both where the theory developed in Bonito et al. (2021) <span>[4]</span> depends on being in the setting of parametric PDEs with affine diffusion coefficients, and prove a more general result outside of this setting.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"300 ","pages":"Article 106040"},"PeriodicalIF":0.9,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021904524000261/pdfft?md5=37c84e9e2faa6a5470ebb676b660de8f&pid=1-s2.0-S0021904524000261-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140321216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wavelet characterization of exponentially weighted Besov space with dominating mixed smoothness and its application to function approximation 具有支配性混合平滑的指数加权贝索夫空间的小波特征及其在函数逼近中的应用
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-03-11 DOI: 10.1016/j.jat.2024.106037
Yoshihiro Kogure, Ken’ichiro Tanaka
{"title":"Wavelet characterization of exponentially weighted Besov space with dominating mixed smoothness and its application to function approximation","authors":"Yoshihiro Kogure,&nbsp;Ken’ichiro Tanaka","doi":"10.1016/j.jat.2024.106037","DOIUrl":"10.1016/j.jat.2024.106037","url":null,"abstract":"<div><p>Although numerous studies have focused on normal Besov spaces, limited studies have been conducted on exponentially weighted Besov spaces. Therefore, we define exponentially weighted Besov space <span><math><mrow><mi>V</mi><msubsup><mrow><mi>B</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow><mrow><mi>δ</mi><mo>,</mo><mi>w</mi></mrow></msubsup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> whose smoothness includes normal Besov spaces, Besov spaces with dominating mixed smoothness, and their interpolation. Furthermore, we obtain wavelet characterization of <span><math><mrow><mi>V</mi><msubsup><mrow><mi>B</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow><mrow><mi>δ</mi><mo>,</mo><mi>w</mi></mrow></msubsup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>. Next, approximation formulas such as sparse grids are derived using the determined formula. The results of this study are expected to provide considerable insight into the application of exponentially weighted Besov spaces with mixed smoothness.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"301 ","pages":"Article 106037"},"PeriodicalIF":0.9,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140127543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Infinite-dimensional integration and L2-approximation on Hermite spaces 赫米特空间上的无穷维积分和 L2- 近似算法
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-02-08 DOI: 10.1016/j.jat.2024.106027
M. Gnewuch , A. Hinrichs , K. Ritter , R. Rüßmann
{"title":"Infinite-dimensional integration and L2-approximation on Hermite spaces","authors":"M. Gnewuch ,&nbsp;A. Hinrichs ,&nbsp;K. Ritter ,&nbsp;R. Rüßmann","doi":"10.1016/j.jat.2024.106027","DOIUrl":"10.1016/j.jat.2024.106027","url":null,"abstract":"<div><p>We study integration and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-approximation of functions of infinitely many variables in the following setting: The underlying function space is the countably infinite tensor product of univariate Hermite spaces and the probability measure is the corresponding product of the standard normal distribution. The maximal domain of the functions from this tensor product space is necessarily a proper subset of the sequence space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. We establish upper and lower bounds for the minimal worst case errors under general assumptions; these bounds do match for tensor products of well-studied Hermite spaces of functions with finite or with infinite smoothness. In the proofs we employ embedding results, and the upper bounds are attained constructively with the help of multivariate decomposition methods.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"300 ","pages":"Article 106027"},"PeriodicalIF":0.9,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139828571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Existence and uniqueness of s-curve segments of tensioned elastica satisfying geometric Hermite interpolation conditions 满足几何赫米特插值条件的拉伸弹性体 s 曲线段的存在性和唯一性
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-02-07 DOI: 10.1016/j.jat.2024.106017
Michael J. Johnson
{"title":"Existence and uniqueness of s-curve segments of tensioned elastica satisfying geometric Hermite interpolation conditions","authors":"Michael J. Johnson","doi":"10.1016/j.jat.2024.106017","DOIUrl":"https://doi.org/10.1016/j.jat.2024.106017","url":null,"abstract":"<div><p>It has been recently proved that every <em>proper</em> restricted elastic spline is a stable nonlinear spline, and this yields a broad existence proof for stable nonlinear splines. When tension is included in the setup, stable nonlinear splines under tension always exist, but they do not always have the property that each piece (connecting one interpolation point to the next) is an s-curve. Being correlated with the fairness of an interpolating curve, this property is desirable and we conjecture that the framework employed successfully with restricted elastic splines will also work well with nonlinear splines under tension. Our purpose is to prove the following foundational result: Given points <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≠</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>, in the plane, along with corresponding unit directions <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> that satisfy <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>⋅</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>≥</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>⋅</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>≥</mo><mn>0</mn></mrow></math></span>, there exists a unique s-curve segment of Euler–Bernoulli elastica under tension <span><math><mrow><mi>λ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> that connects <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> to <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> with initial direction <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and terminal direction <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"300 ","pages":"Article 106017"},"PeriodicalIF":0.9,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139985540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inradius of random lemniscates 随机半径
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-02-03 DOI: 10.1016/j.jat.2024.106018
Manjunath Krishnapur , Erik Lundberg , Koushik Ramachandran
{"title":"Inradius of random lemniscates","authors":"Manjunath Krishnapur ,&nbsp;Erik Lundberg ,&nbsp;Koushik Ramachandran","doi":"10.1016/j.jat.2024.106018","DOIUrl":"10.1016/j.jat.2024.106018","url":null,"abstract":"<div><p>A classically studied geometric property associated to a complex polynomial <span><math><mi>p</mi></math></span> is the inradius (the radius of the largest inscribed disk) of its (filled) lemniscate <span><math><mrow><mi>Λ</mi><mo>≔</mo><mrow><mo>{</mo><mi>z</mi><mo>∈</mo><mi>ℂ</mi><mo>:</mo><mrow><mo>|</mo><mi>p</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>&lt;</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span>.</p><p>In this paper, we study the lemniscate inradius when the defining polynomial <span><math><mi>p</mi></math></span> is random, namely, with the zeros of <span><math><mi>p</mi></math></span> sampled independently from a compactly supported probability measure <span><math><mi>μ</mi></math></span>. If the negative set of the logarithmic potential <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>μ</mi></mrow></msub></math></span> generated by <span><math><mi>μ</mi></math></span> is non-empty, then the inradius is bounded from below by a positive constant with overwhelming probability (as the degree <span><math><mi>n</mi></math></span> of <span><math><mi>p</mi></math></span> tends to infinity). Moreover, the inradius has a deterministic limit if the negative set of <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>μ</mi></mrow></msub></math></span> additionally contains the support of <span><math><mi>μ</mi></math></span>.</p><p>We also provide conditions on <span><math><mi>μ</mi></math></span> guaranteeing that the lemniscate is contained in a union of <span><math><mi>n</mi></math></span> exponentially small disks with overwhelming probability. This leads to a partial solution to a (deterministic) problem concerning the area of lemniscates posed by Erdös, Herzog, and Piranian.</p><p>On the other hand, when the zeros are sampled independently and uniformly from the unit circle, then we show that the inradius converges in distribution to a random variable taking values in <span><math><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></mrow></math></span>.</p><p>We also consider the characteristic polynomial of a Ginibre random matrix whose lemniscate we show is close to the unit disk with overwhelming probability.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"299 ","pages":"Article 106018"},"PeriodicalIF":0.9,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139679171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Infinite-dimensional integration and L2-approximation on Hermite spaces 赫米特空间上的无穷维积分和 L2- 近似算法
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-02-01 DOI: 10.1016/j.jat.2024.106027
M. Gnewuch, A. Hinrichs, K. Ritter, R. Rüßmann
{"title":"Infinite-dimensional integration and L2-approximation on Hermite spaces","authors":"M. Gnewuch, A. Hinrichs, K. Ritter, R. Rüßmann","doi":"10.1016/j.jat.2024.106027","DOIUrl":"https://doi.org/10.1016/j.jat.2024.106027","url":null,"abstract":"","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"28 2","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139888602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimates of linear expressions through factorization 通过因式分解估算线性表达式
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-01-23 DOI: 10.1016/j.jat.2024.106019
Ali Hasan Ali , Zsolt Páles
{"title":"Estimates of linear expressions through factorization","authors":"Ali Hasan Ali ,&nbsp;Zsolt Páles","doi":"10.1016/j.jat.2024.106019","DOIUrl":"10.1016/j.jat.2024.106019","url":null,"abstract":"<div><p>The aim of this paper is to establish various factorization results and then to derive estimates for linear functionals through the use of a generalized Taylor theorem. Additionally, several error bounds are established including applications to the trapezoidal rule as well as to a Simpson formula-type rule.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"299 ","pages":"Article 106019"},"PeriodicalIF":0.9,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021904524000054/pdfft?md5=acddbc03e340f31280d60e4dcc812a41&pid=1-s2.0-S0021904524000054-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139555798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multivariate polynomial splines on generalized oranges 广义桔子上的多变量多项式样条曲线
IF 0.9 3区 数学
Journal of Approximation Theory Pub Date : 2024-01-15 DOI: 10.1016/j.jat.2024.106016
Maritza Sirvent , Tatyana Sorokina , Nelly Villamizar , Beihui Yuan
{"title":"Multivariate polynomial splines on generalized oranges","authors":"Maritza Sirvent ,&nbsp;Tatyana Sorokina ,&nbsp;Nelly Villamizar ,&nbsp;Beihui Yuan","doi":"10.1016/j.jat.2024.106016","DOIUrl":"10.1016/j.jat.2024.106016","url":null,"abstract":"<div><p>We consider spaces of multivariate splines defined on a particular type of simplicial partitions that we call <em>(generalized) oranges</em>. Such partitions are composed of a finite number of maximal faces with exactly one shared <em>medial</em> face. We reduce the problem of finding the dimension of splines on oranges to computing dimensions of splines on simpler, lower-dimensional partitions that we call <em>projected oranges</em>. We use both algebraic and Bernstein–Bézier tools.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"299 ","pages":"Article 106016"},"PeriodicalIF":0.9,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021904524000029/pdfft?md5=4b8bba34d42f748261b9923cce3ba6be&pid=1-s2.0-S0021904524000029-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139496860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信