{"title":"与兼容函数相关的 Lp Minkowski 问题 <mml:math xmlns:mml=\"h","authors":"Ni Li , Jin Yang","doi":"10.1016/j.jat.2024.106057","DOIUrl":null,"url":null,"abstract":"<div><p>Motivated by some properties of the geometric measures for compact convex sets in the Brunn–Minkowski theory, such as the properties of the volume, the <span><math><mi>p</mi></math></span>-capacity <span><math><mrow><mo>(</mo><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mi>n</mi><mo>)</mo></mrow></math></span> and the torsional rigidity for compact convex sets, we introduce a more general geometric invariant, called the compatible functional <span><math><mi>F</mi></math></span>. Inspired also by the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> Minkowski problem associated with the volume, the <span><math><mi>p</mi></math></span>-capacity and the torsional rigidity for compact convex sets, we pose the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> Minkowski problem associated with the compatible functional <span><math><mi>F</mi></math></span> and prove the existence of the solutions to this problem for <span><math><mrow><mi>p</mi><mo>></mo><mn>0</mn></mrow></math></span>. We will show that the volume, the <span><math><mi>p</mi></math></span>-capacity <span><math><mrow><mo>(</mo><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mn>2</mn><mo>)</mo></mrow></math></span> and the torsional rigidity for compact convex sets are the compatible functionals. Thus, as an application, we provide the solution to the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> Minkowski problem <span><math><mrow><mo>(</mo><mn>0</mn><mo><</mo><mi>p</mi><mo><</mo><mn>1</mn><mo>)</mo></mrow></math></span> for arbitrary measure associated with <span><math><mi>p</mi></math></span>-capacity <span><math><mrow><mo>(</mo><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mn>2</mn><mo>)</mo></mrow></math></span>.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Lp Minkowski problem associated with the compatible functional F\",\"authors\":\"Ni Li , Jin Yang\",\"doi\":\"10.1016/j.jat.2024.106057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Motivated by some properties of the geometric measures for compact convex sets in the Brunn–Minkowski theory, such as the properties of the volume, the <span><math><mi>p</mi></math></span>-capacity <span><math><mrow><mo>(</mo><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mi>n</mi><mo>)</mo></mrow></math></span> and the torsional rigidity for compact convex sets, we introduce a more general geometric invariant, called the compatible functional <span><math><mi>F</mi></math></span>. Inspired also by the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> Minkowski problem associated with the volume, the <span><math><mi>p</mi></math></span>-capacity and the torsional rigidity for compact convex sets, we pose the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> Minkowski problem associated with the compatible functional <span><math><mi>F</mi></math></span> and prove the existence of the solutions to this problem for <span><math><mrow><mi>p</mi><mo>></mo><mn>0</mn></mrow></math></span>. We will show that the volume, the <span><math><mi>p</mi></math></span>-capacity <span><math><mrow><mo>(</mo><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mn>2</mn><mo>)</mo></mrow></math></span> and the torsional rigidity for compact convex sets are the compatible functionals. Thus, as an application, we provide the solution to the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> Minkowski problem <span><math><mrow><mo>(</mo><mn>0</mn><mo><</mo><mi>p</mi><mo><</mo><mn>1</mn><mo>)</mo></mrow></math></span> for arbitrary measure associated with <span><math><mi>p</mi></math></span>-capacity <span><math><mrow><mo>(</mo><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mn>2</mn><mo>)</mo></mrow></math></span>.</p></div>\",\"PeriodicalId\":54878,\"journal\":{\"name\":\"Journal of Approximation Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Approximation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021904524000431\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904524000431","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Lp Minkowski problem associated with the compatible functional F
Motivated by some properties of the geometric measures for compact convex sets in the Brunn–Minkowski theory, such as the properties of the volume, the -capacity and the torsional rigidity for compact convex sets, we introduce a more general geometric invariant, called the compatible functional . Inspired also by the Minkowski problem associated with the volume, the -capacity and the torsional rigidity for compact convex sets, we pose the Minkowski problem associated with the compatible functional and prove the existence of the solutions to this problem for . We will show that the volume, the -capacity and the torsional rigidity for compact convex sets are the compatible functionals. Thus, as an application, we provide the solution to the Minkowski problem for arbitrary measure associated with -capacity .
期刊介绍:
The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others:
• Classical approximation
• Abstract approximation
• Constructive approximation
• Degree of approximation
• Fourier expansions
• Interpolation of operators
• General orthogonal systems
• Interpolation and quadratures
• Multivariate approximation
• Orthogonal polynomials
• Padé approximation
• Rational approximation
• Spline functions of one and several variables
• Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds
• Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth)
• Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis
• Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth)
• Gabor (Weyl-Heisenberg) expansions and sampling theory.