与兼容函数相关的 Lp Minkowski 问题 IF 0.9 3区 数学 Q2 MATHEMATICS

Journal of Approximation Theory Pub Date : 2024-06-08 DOI:10.1016/j.jat.2024.106057
Ni Li , Jin Yang
{"title":"与兼容函数相关的 Lp Minkowski 问题 <mml:math xmlns:mml=\"h","authors":"Ni Li ,&nbsp;Jin Yang","doi":"10.1016/j.jat.2024.106057","DOIUrl":null,"url":null,"abstract":"<div><p>Motivated by some properties of the geometric measures for compact convex sets in the Brunn–Minkowski theory, such as the properties of the volume, the <span><math><mi>p</mi></math></span>-capacity <span><math><mrow><mo>(</mo><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mi>n</mi><mo>)</mo></mrow></math></span> and the torsional rigidity for compact convex sets, we introduce a more general geometric invariant, called the compatible functional <span><math><mi>F</mi></math></span>. Inspired also by the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> Minkowski problem associated with the volume, the <span><math><mi>p</mi></math></span>-capacity and the torsional rigidity for compact convex sets, we pose the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> Minkowski problem associated with the compatible functional <span><math><mi>F</mi></math></span> and prove the existence of the solutions to this problem for <span><math><mrow><mi>p</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. We will show that the volume, the <span><math><mi>p</mi></math></span>-capacity <span><math><mrow><mo>(</mo><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mn>2</mn><mo>)</mo></mrow></math></span> and the torsional rigidity for compact convex sets are the compatible functionals. Thus, as an application, we provide the solution to the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> Minkowski problem <span><math><mrow><mo>(</mo><mn>0</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mn>1</mn><mo>)</mo></mrow></math></span> for arbitrary measure associated with <span><math><mi>p</mi></math></span>-capacity <span><math><mrow><mo>(</mo><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mn>2</mn><mo>)</mo></mrow></math></span>.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Lp Minkowski problem associated with the compatible functional F\",\"authors\":\"Ni Li ,&nbsp;Jin Yang\",\"doi\":\"10.1016/j.jat.2024.106057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Motivated by some properties of the geometric measures for compact convex sets in the Brunn–Minkowski theory, such as the properties of the volume, the <span><math><mi>p</mi></math></span>-capacity <span><math><mrow><mo>(</mo><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mi>n</mi><mo>)</mo></mrow></math></span> and the torsional rigidity for compact convex sets, we introduce a more general geometric invariant, called the compatible functional <span><math><mi>F</mi></math></span>. Inspired also by the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> Minkowski problem associated with the volume, the <span><math><mi>p</mi></math></span>-capacity and the torsional rigidity for compact convex sets, we pose the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> Minkowski problem associated with the compatible functional <span><math><mi>F</mi></math></span> and prove the existence of the solutions to this problem for <span><math><mrow><mi>p</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. We will show that the volume, the <span><math><mi>p</mi></math></span>-capacity <span><math><mrow><mo>(</mo><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mn>2</mn><mo>)</mo></mrow></math></span> and the torsional rigidity for compact convex sets are the compatible functionals. Thus, as an application, we provide the solution to the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> Minkowski problem <span><math><mrow><mo>(</mo><mn>0</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mn>1</mn><mo>)</mo></mrow></math></span> for arbitrary measure associated with <span><math><mi>p</mi></math></span>-capacity <span><math><mrow><mo>(</mo><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mn>2</mn><mo>)</mo></mrow></math></span>.</p></div>\",\"PeriodicalId\":54878,\"journal\":{\"name\":\"Journal of Approximation Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Approximation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021904524000431\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904524000431","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

受布伦-闵科夫斯基理论中紧凑凸集几何度量的一些性质(如紧凑凸集的体积、p-容量(1<p<n)和扭转刚性)的启发,我们引入了一个更一般的几何不变量,称为相容函数 F。受与紧凑凸集的体积、p-容积和扭转刚性相关的 Lp Minkowski 问题的启发,我们提出了与兼容函数 F 相关的 Lp Minkowski 问题,并证明了 p>0 时该问题解的存在性。我们将证明紧凑凸集的体积、p 容量(1<p<2)和扭转刚度是相容函数。因此,作为应用,我们提供了与 p-容量(1<p<2)相关的任意度量的 Lp Minkowski 问题(0<p<1)的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
The Lp Minkowski problem associated with the compatible functional F

Motivated by some properties of the geometric measures for compact convex sets in the Brunn–Minkowski theory, such as the properties of the volume, the p-capacity (1<p<n) and the torsional rigidity for compact convex sets, we introduce a more general geometric invariant, called the compatible functional F. Inspired also by the Lp Minkowski problem associated with the volume, the p-capacity and the torsional rigidity for compact convex sets, we pose the Lp Minkowski problem associated with the compatible functional F and prove the existence of the solutions to this problem for p>0. We will show that the volume, the p-capacity (1<p<2) and the torsional rigidity for compact convex sets are the compatible functionals. Thus, as an application, we provide the solution to the Lp Minkowski problem (0<p<1) for arbitrary measure associated with p-capacity (1<p<2).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Approximation Theory
CiteScore
1.90
自引率
11.10%
发文量
55
审稿时长
6-12 weeks
期刊介绍: The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others: • Classical approximation • Abstract approximation • Constructive approximation • Degree of approximation • Fourier expansions • Interpolation of operators • General orthogonal systems • Interpolation and quadratures • Multivariate approximation • Orthogonal polynomials • Padé approximation • Rational approximation • Spline functions of one and several variables • Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds • Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth) • Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis • Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth) • Gabor (Weyl-Heisenberg) expansions and sampling theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
请完成安全验证×
微信好友 朋友圈 QQ好友 复制链接
取消
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信