可求和序列的随机逼近--适应性和非适应性

IF 0.9 3区 数学 Q2 MATHEMATICS
Robert J. Kunsch , Erich Novak , Marcin Wnuk
{"title":"可求和序列的随机逼近--适应性和非适应性","authors":"Robert J. Kunsch ,&nbsp;Erich Novak ,&nbsp;Marcin Wnuk","doi":"10.1016/j.jat.2024.106056","DOIUrl":null,"url":null,"abstract":"<div><p>We prove lower bounds for the randomized approximation of the embedding <span><math><mrow><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>m</mi></mrow></msubsup><mo>↪</mo><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mi>∞</mi></mrow><mrow><mi>m</mi></mrow></msubsup></mrow></math></span> based on algorithms that use arbitrary linear (hence non-adaptive) information provided by a (randomized) measurement matrix <span><math><mrow><mi>N</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>m</mi></mrow></msup></mrow></math></span>. These lower bounds reflect the increasing difficulty of the problem for <span><math><mrow><mi>m</mi><mo>→</mo><mi>∞</mi></mrow></math></span>, namely, a term <span><math><msqrt><mrow><mo>log</mo><mi>m</mi></mrow></msqrt></math></span> in the complexity <span><math><mi>n</mi></math></span>. This result implies that non-compact operators between arbitrary Banach spaces are not approximable using non-adaptive Monte Carlo methods. We also compare these lower bounds for non-adaptive methods with upper bounds based on adaptive, randomized methods for recovery for which the complexity <span><math><mi>n</mi></math></span> only exhibits a <span><math><mrow><mo>(</mo><mo>log</mo><mo>log</mo><mi>m</mi><mo>)</mo></mrow></math></span>-dependence. In doing so we give an example of linear problems where the error for adaptive vs. non-adaptive Monte Carlo methods shows a gap of order <span><math><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><msup><mrow><mrow><mo>(</mo><mo>log</mo><mi>n</mi><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></mrow></math></span>.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Randomized approximation of summable sequences — adaptive and non-adaptive\",\"authors\":\"Robert J. Kunsch ,&nbsp;Erich Novak ,&nbsp;Marcin Wnuk\",\"doi\":\"10.1016/j.jat.2024.106056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove lower bounds for the randomized approximation of the embedding <span><math><mrow><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>m</mi></mrow></msubsup><mo>↪</mo><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mi>∞</mi></mrow><mrow><mi>m</mi></mrow></msubsup></mrow></math></span> based on algorithms that use arbitrary linear (hence non-adaptive) information provided by a (randomized) measurement matrix <span><math><mrow><mi>N</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>m</mi></mrow></msup></mrow></math></span>. These lower bounds reflect the increasing difficulty of the problem for <span><math><mrow><mi>m</mi><mo>→</mo><mi>∞</mi></mrow></math></span>, namely, a term <span><math><msqrt><mrow><mo>log</mo><mi>m</mi></mrow></msqrt></math></span> in the complexity <span><math><mi>n</mi></math></span>. This result implies that non-compact operators between arbitrary Banach spaces are not approximable using non-adaptive Monte Carlo methods. We also compare these lower bounds for non-adaptive methods with upper bounds based on adaptive, randomized methods for recovery for which the complexity <span><math><mi>n</mi></math></span> only exhibits a <span><math><mrow><mo>(</mo><mo>log</mo><mo>log</mo><mi>m</mi><mo>)</mo></mrow></math></span>-dependence. In doing so we give an example of linear problems where the error for adaptive vs. non-adaptive Monte Carlo methods shows a gap of order <span><math><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><msup><mrow><mrow><mo>(</mo><mo>log</mo><mi>n</mi><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></mrow></math></span>.</p></div>\",\"PeriodicalId\":54878,\"journal\":{\"name\":\"Journal of Approximation Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Approximation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002190452400042X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002190452400042X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了基于使用由(随机)测量矩阵提供的任意线性(因此非适应性)信息的算法的嵌入随机近似的下限。这些下界反映了问题难度的增加,即复杂度中的一个项......。这一结果意味着,任意巴拿赫空间之间的非紧凑算子无法用非自适应蒙特卡洛方法逼近。我们还将这些非自适应方法的下界与基于自适应随机方法的上界进行了比较,对于后者,复杂度只表现出-依赖关系。为此,我们举了一个线性问题的例子,在这些问题中,自适应蒙特卡洛方法与非自适应蒙特卡洛方法的误差显示出数量级为.的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Randomized approximation of summable sequences — adaptive and non-adaptive

We prove lower bounds for the randomized approximation of the embedding 1mm based on algorithms that use arbitrary linear (hence non-adaptive) information provided by a (randomized) measurement matrix NRn×m. These lower bounds reflect the increasing difficulty of the problem for m, namely, a term logm in the complexity n. This result implies that non-compact operators between arbitrary Banach spaces are not approximable using non-adaptive Monte Carlo methods. We also compare these lower bounds for non-adaptive methods with upper bounds based on adaptive, randomized methods for recovery for which the complexity n only exhibits a (loglogm)-dependence. In doing so we give an example of linear problems where the error for adaptive vs. non-adaptive Monte Carlo methods shows a gap of order n1/2(logn)1/2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
11.10%
发文量
55
审稿时长
6-12 weeks
期刊介绍: The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others: • Classical approximation • Abstract approximation • Constructive approximation • Degree of approximation • Fourier expansions • Interpolation of operators • General orthogonal systems • Interpolation and quadratures • Multivariate approximation • Orthogonal polynomials • Padé approximation • Rational approximation • Spline functions of one and several variables • Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds • Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth) • Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis • Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth) • Gabor (Weyl-Heisenberg) expansions and sampling theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信