Chebyshev polynomials corresponding to a vanishing weight

IF 0.9 3区 数学 Q2 MATHEMATICS
Alex Bergman, Olof Rubin
{"title":"Chebyshev polynomials corresponding to a vanishing weight","authors":"Alex Bergman,&nbsp;Olof Rubin","doi":"10.1016/j.jat.2024.106048","DOIUrl":null,"url":null,"abstract":"<div><p>We consider weighted Chebyshev polynomials on the unit circle corresponding to a weight of the form <span><math><msup><mrow><mrow><mo>(</mo><mi>z</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mi>s</mi></mrow></msup></math></span> where <span><math><mrow><mi>s</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. For integer values of <span><math><mi>s</mi></math></span> this corresponds to prescribing a zero of the polynomial on the boundary. As such, we extend findings of Lachance et al. (1979), to non-integer <span><math><mi>s</mi></math></span>. Using this generalisation, we are able to relate Chebyshev polynomials on lemniscates and other, more established, categories of Chebyshev polynomials. An essential part of our proof involves the broadening of the Erdős–Lax inequality to encompass powers of polynomials. We believe that this particular result holds significance in its own right.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021904524000340/pdfft?md5=69221809242b1dccb0aa329cd8cfc72b&pid=1-s2.0-S0021904524000340-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904524000340","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider weighted Chebyshev polynomials on the unit circle corresponding to a weight of the form (z1)s where s>0. For integer values of s this corresponds to prescribing a zero of the polynomial on the boundary. As such, we extend findings of Lachance et al. (1979), to non-integer s. Using this generalisation, we are able to relate Chebyshev polynomials on lemniscates and other, more established, categories of Chebyshev polynomials. An essential part of our proof involves the broadening of the Erdős–Lax inequality to encompass powers of polynomials. We believe that this particular result holds significance in its own right.

与消失权重相对应的切比雪夫多项式
我们考虑的是单位圆上的加权切比雪夫多项式,对应于 s>0 的 (z-1)s 形式的权值。对于 s 的整数值,这相当于在边界上规定多项式的零点。因此,我们将 Lachance 等人(1979 年)的发现扩展到了非整数 s。利用这一概括,我们就能将 lemniscates 上的切比雪夫多项式与其他更成熟的切比雪夫多项式类别联系起来。我们证明的一个重要部分是扩大厄尔多斯-拉克斯不等式的范围,使其包括多项式的幂。我们相信,这一特殊结果本身就具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
11.10%
发文量
55
审稿时长
6-12 weeks
期刊介绍: The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others: • Classical approximation • Abstract approximation • Constructive approximation • Degree of approximation • Fourier expansions • Interpolation of operators • General orthogonal systems • Interpolation and quadratures • Multivariate approximation • Orthogonal polynomials • Padé approximation • Rational approximation • Spline functions of one and several variables • Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds • Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth) • Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis • Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth) • Gabor (Weyl-Heisenberg) expansions and sampling theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信