Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology最新文献

筛选
英文 中文
One seasonal clock fits all? 一个季节性的时钟适合所有人?
IF 1.9 4区 心理学
Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology Pub Date : 2024-07-01 Epub Date: 2023-11-10 DOI: 10.1007/s00359-023-01680-4
Stephan Michel, Laura Kervezee
{"title":"One seasonal clock fits all?","authors":"Stephan Michel, Laura Kervezee","doi":"10.1007/s00359-023-01680-4","DOIUrl":"10.1007/s00359-023-01680-4","url":null,"abstract":"<p><p>Adaptation of physiology and behavior to seasonal changes in the environment are for many organisms essential for survival. Most of our knowledge about the underlying mechanisms comes from research on photoperiodic regulation of reproduction in plants, insects and mammals. However, even humans, who mostly live in environments with minimal seasonal influences, show annual rhythms in physiology (e.g., immune activity, brain function), behavior (e.g., sleep-wake cycles) and disease prevalence (e.g., infectious diseases). As seasonal variations in environmental conditions may be drastically altered due to climate change, the understanding of the mechanisms underlying seasonal adaptation of physiology and behavior becomes even more relevant. While many species have developed specific solutions for dedicated tasks of photoperiodic regulation, we find a number of common principles and mechanisms when comparing insect and mammalian systems: (1) the circadian system contributes to photoperiodic regulation; (2) similar signaling molecules (VIP and PDF) are used for transferring information from the circadian system to the neuroendocrine system controlling the photoperiodic response; (3) the hormone melatonin participates in seasonal adaptation in insects as well as mammals; and (4) changes in photoperiod affect neurotransmitter function in both animal groups. The few examples of overlap elaborated in this perspective article, as well as the discussion on relevance for humans, should be seen as encouragement to unravel the machinery of seasonal adaptation in a multitude of organisms.</p>","PeriodicalId":54862,"journal":{"name":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","volume":" ","pages":"641-647"},"PeriodicalIF":1.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11226558/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72016203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The seasons within: a theoretical perspective on photoperiodic entrainment and encoding. 内心的四季:光周期诱导和编码的理论视角。
IF 1.9 4区 心理学
Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology Pub Date : 2024-07-01 Epub Date: 2023-09-02 DOI: 10.1007/s00359-023-01669-z
Christoph Schmal
{"title":"The seasons within: a theoretical perspective on photoperiodic entrainment and encoding.","authors":"Christoph Schmal","doi":"10.1007/s00359-023-01669-z","DOIUrl":"10.1007/s00359-023-01669-z","url":null,"abstract":"<p><p>Circadian clocks are internal timing devices that have evolved as an adaption to the omnipresent natural 24 h rhythmicity of daylight intensity. Properties of the circadian system are photoperiod dependent. The phase of entrainment varies systematically with season. Plastic photoperiod-dependent re-arrangements in the mammalian circadian core pacemaker yield an internal representation of season. Output pathways of the circadian clock regulate photoperiodic responses such as flowering time in plants or hibernation in mammals. Here, we review the concepts of seasonal entrainment and photoperiodic encoding. We introduce conceptual phase oscillator models as their high level of abstraction, but, yet, intuitive interpretation of underlying parameters allows for a straightforward analysis of principles that determine entrainment characteristics. Results from this class of models are related and discussed in the context of more complex conceptual amplitude-phase oscillators as well as contextual molecular models that take into account organism, tissue, and cell-type-specific details.</p>","PeriodicalId":54862,"journal":{"name":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","volume":" ","pages":"549-564"},"PeriodicalIF":1.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11226496/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10140518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the origin and evolution of the dual oscillator model underlying the photoperiodic clockwork in the suprachiasmatic nucleus. 论上丘脑核光周期钟表双振荡器模型的起源与演变
IF 1.9 4区 心理学
Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology Pub Date : 2024-07-01 Epub Date: 2023-07-23 DOI: 10.1007/s00359-023-01659-1
Jennifer A Evans, William J Schwartz
{"title":"On the origin and evolution of the dual oscillator model underlying the photoperiodic clockwork in the suprachiasmatic nucleus.","authors":"Jennifer A Evans, William J Schwartz","doi":"10.1007/s00359-023-01659-1","DOIUrl":"10.1007/s00359-023-01659-1","url":null,"abstract":"<p><p>Decades have now passed since Colin Pittendrigh first proposed a model of a circadian clock composed of two coupled oscillators, individually responsive to the rising and setting sun, as a flexible solution to the challenge of behavioral and physiological adaptation to the changing seasons. The elegance and predictive power of this postulation has stimulated laboratories around the world in searches to identify and localize such hypothesized evening and morning oscillators, or sets of oscillators, in insects, rodents, and humans, with experimental designs and approaches keeping pace over the years with technological advances in biology and neuroscience. Here, we recount the conceptual origin and highlight the subsequent evolution of this dual oscillator model for the circadian clock in the mammalian suprachiasmatic nucleus; and how, despite our increasingly sophisticated view of this multicellular pacemaker, Pittendrigh's binary conception has remained influential in our clock models and metaphors.</p>","PeriodicalId":54862,"journal":{"name":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","volume":" ","pages":"503-511"},"PeriodicalIF":1.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924288/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9855606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drosophila ezoana uses morning and evening oscillators to adjust its rhythmic activity to different daylengths but only the morning oscillator to measure night length for photoperiodic responses. 虾夷果蝇利用晨昏振荡器根据不同的昼长调整其节律活动,但只利用晨昏振荡器测量夜长以作出光周期反应。
IF 1.9 4区 心理学
Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology Pub Date : 2024-07-01 Epub Date: 2023-06-17 DOI: 10.1007/s00359-023-01646-6
Koustubh M Vaze, Giulia Manoli, Charlotte Helfrich-Förster
{"title":"Drosophila ezoana uses morning and evening oscillators to adjust its rhythmic activity to different daylengths but only the morning oscillator to measure night length for photoperiodic responses.","authors":"Koustubh M Vaze, Giulia Manoli, Charlotte Helfrich-Förster","doi":"10.1007/s00359-023-01646-6","DOIUrl":"10.1007/s00359-023-01646-6","url":null,"abstract":"<p><p>Animals living at high latitudes are exposed to prominent seasonal changes to which they need to adapt to survive. By applying Zeitgeber cycles of different periods and photoperiods we show here that high-latitude D. ezoana flies possess evening oscillators and highly damped morning oscillators that help them adapting their activity rhythms to long photoperiods. In addition, the damped morning oscillators are involved in timing diapause. The flies measure night length and use external coincidence for timing diapause. We discuss the clock protein TIMELESS (d-TIM) as the molecular correlate and the small ventrolateral clock neurons (s-LN<sub>v</sub>s) as the anatomical correlates of the components measuring night length.</p>","PeriodicalId":54862,"journal":{"name":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","volume":" ","pages":"535-548"},"PeriodicalIF":1.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11226516/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9635984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Time measurement in insect photoperiodism: external and internal coincidence. 昆虫光周期的时间测量:外部和内部重合。
IF 1.9 4区 心理学
Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology Pub Date : 2024-07-01 Epub Date: 2023-09-12 DOI: 10.1007/s00359-023-01648-4
David S Saunders
{"title":"Time measurement in insect photoperiodism: external and internal coincidence.","authors":"David S Saunders","doi":"10.1007/s00359-023-01648-4","DOIUrl":"10.1007/s00359-023-01648-4","url":null,"abstract":"<p><p>The identity and nature of the photoperiodic photoreceptors are now quite well known, as is the nature of the endocrine regulation of the resulting diapauses. The central problem of time measurement-how the photoperiodic clock differentiates long from short days-however, is still obscure, known only from whole-animal experiments and abstract models, although it is clearly a function of the insect circadian system. This review describes some of these experiments in terms of oscillator entrainment and two widely applicable photoperiodic clock models, external and internal coincidence, mainly using data from experiments on flesh flies (Sarcophaga spp) and the parasitic wasp, Nasonia vitripennis.</p>","PeriodicalId":54862,"journal":{"name":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","volume":" ","pages":"513-525"},"PeriodicalIF":1.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11226529/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10216088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A clock for all seasons in the subterranean. 地下四季的时钟。
IF 1.9 4区 心理学
Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology Pub Date : 2024-07-01 Epub Date: 2023-10-10 DOI: 10.1007/s00359-023-01677-z
Gisele A Oda, Veronica S Valentinuzzi
{"title":"A clock for all seasons in the subterranean.","authors":"Gisele A Oda, Veronica S Valentinuzzi","doi":"10.1007/s00359-023-01677-z","DOIUrl":"10.1007/s00359-023-01677-z","url":null,"abstract":"<p><p>In 1976, Pittendrigh and Daan established a theoretical framework which has coordinated research on circadian clock entrainment and photoperiodism until today. The \"wild clocks\" approach, which concerns studying wild species in their natural habitats, has served to test their models, add new insights, and open new directions of research. Here, we review an integrated laboratory, field and modeling work conducted with subterranean rodents (Ctenomys sp.) living under an extreme pattern of natural daily light exposure. Tracking animal movement and light exposure with biologgers across seasons and performing laboratory experiments on running-wheel cages, we uncovered the mechanisms of day/night entrainment of the clock and of photoperiodic time measurement in this subterranean organism. We confirmed most of the features of Pittendrigh and Daan's models but highlighted the importance of integrating them with ecophysiological techniques, methodologies, and theories to get a full picture of the clock in the wild. This integration is essential to fully establish the importance of the temporal dimension in ecological studies and tackling relevant questions such as the role of the clock for all seasons in a changing planet.</p>","PeriodicalId":54862,"journal":{"name":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","volume":" ","pages":"677-689"},"PeriodicalIF":1.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41184255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A clock for all seasons. 四季皆宜的时钟
IF 1.9 4区 心理学
Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology Pub Date : 2024-07-01 Epub Date: 2024-06-19 DOI: 10.1007/s00359-024-01711-8
Charlotte Helfrich-Förster, Dirk Rieger
{"title":"A clock for all seasons.","authors":"Charlotte Helfrich-Förster, Dirk Rieger","doi":"10.1007/s00359-024-01711-8","DOIUrl":"10.1007/s00359-024-01711-8","url":null,"abstract":"<p><p>Circadian clocks play an essential role in adapting locomotor activity as well as physiological, and metabolic rhythms of organisms to the day-night cycles on Earth during the four seasons. In addition, they can serve as a time reference for measuring day length and adapt organisms in advance to annual changes in the environment, which can be particularly pronounced at higher latitudes. The physiological responses of organisms to day length are also known as photoperiodism. This special issue of the Journal of Comparative Physiology A aims to account for diurnal and photoperiodic adaptations by presenting a collection of ten review articles, five original research articles, and three perspective pieces. The contributions include historical accounts, circadian and photoperiodic clock models, epigenetic, molecular, and neuronal mechanisms of seasonal adaptations, latitudinal differences in photoperiodic responses and studies in the wild that address the challenges of global change.</p>","PeriodicalId":54862,"journal":{"name":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","volume":" ","pages":"473-480"},"PeriodicalIF":1.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11226552/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141421848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temporal effects of sugar intake on fly local search and honey bee dance behaviour. 摄入糖分对苍蝇本地搜索和蜜蜂舞蹈行为的时间影响
IF 2.1 4区 心理学
Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology Pub Date : 2024-05-01 Epub Date: 2023-08-25 DOI: 10.1007/s00359-023-01670-6
Manal Shakeel, Axel Brockmann
{"title":"Temporal effects of sugar intake on fly local search and honey bee dance behaviour.","authors":"Manal Shakeel, Axel Brockmann","doi":"10.1007/s00359-023-01670-6","DOIUrl":"10.1007/s00359-023-01670-6","url":null,"abstract":"<p><p>Honey bees communicate flight navigational information of profitable food to nestmates via their dance, a small-scale walking pattern, inside the nest. Hungry flies and honey bee foragers exhibit a sugar-elicited search involving path integration that bears a resemblance to dance behaviour. This study aimed to investigate the temporal dynamics of the initiation of sugar-elicited search and dance behaviour, using a comparative approach. Passive displacement experiments showed that feeding and the initiation of search could be spatially and temporally dissociated. Sugar intake increased the probability of initiating a search but the actual onset of walking triggers the path integration system to guide the search. When prevented from walking after feeding, flies and bees maintained their motivation for a path integration-based search for a duration of 3 min. In flies, turning and associated characters were significantly reduced during this period but remained higher than in flies without sugar stimulus. These results suggest that sugar elicits two independent behavioural responses: path integration and increased turning, with the initiation and duration of path integration system being temporally restricted. Honey bee dance experiments demonstrated that the motivation of foragers to initiate dance persisted for 15 min, while the number of circuits declined after 3 min following sugar ingestion. Based on these findings, we propose that food intake during foraging increases the probability to initiate locomotor behaviours involving the path integration system in both flies and honey bees, and this ancestral connection might have been co-opted and elaborated during the evolution of dance communication by honey bees.</p>","PeriodicalId":54862,"journal":{"name":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","volume":" ","pages":"415-429"},"PeriodicalIF":2.1,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10444497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sexual discrimination and attraction through scents in the water vole, Arvicola terrestris. 水田鼠(Arvicola terrestris)通过气味进行性鉴别和性吸引。
IF 2.1 4区 心理学
Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology Pub Date : 2024-05-01 Epub Date: 2023-09-10 DOI: 10.1007/s00359-023-01671-5
Kévin Poissenot, Anne-Charlotte Trouillet, Elliott Trives, Chantal Moussu, Didier Chesneau, Maxime Meunier, Virginie Lattard, Areski Chorfa, Fabrice Saez, Joël Drevet, Chrystelle Le Danvic, Patricia Nagnan-Le Meillour, Pablo Chamero, Matthieu Keller
{"title":"Sexual discrimination and attraction through scents in the water vole, Arvicola terrestris.","authors":"Kévin Poissenot, Anne-Charlotte Trouillet, Elliott Trives, Chantal Moussu, Didier Chesneau, Maxime Meunier, Virginie Lattard, Areski Chorfa, Fabrice Saez, Joël Drevet, Chrystelle Le Danvic, Patricia Nagnan-Le Meillour, Pablo Chamero, Matthieu Keller","doi":"10.1007/s00359-023-01671-5","DOIUrl":"10.1007/s00359-023-01671-5","url":null,"abstract":"<p><p>In mammals, especially rodents, social behaviours, such as parenting, territoriality or mate attraction, are largely based on olfactory communication through chemosignals. These behaviours are mediated by species-specific chemosignals, including small organic molecules and proteins that are secreted in the urine or in various fluids from exocrine glands. Chemosignal detection is mainly ensured by olfactory neurons in two specific sensory organs, the vomeronasal organ (VNO) and the main olfactory epithelium (MOE). This study aimed to characterise the olfactory communication in the fossorial ecotype of the water voles, Arvicola terrestris. We first measured the olfactory investigation of urine and lateral scent gland secretions from conspecifics. Our results showed that water voles can discriminate the sex of conspecifics based on the smell of urine, and that urinary male odour is attractive for female voles. Then, we demonstrated the ability of the VNO and MOE to detect volatile organic compounds (VOCs) found in water vole secretions using live-cell calcium imaging in dissociated cells. Finally, we evaluated the attractiveness of two mixtures of VOCs from urine or lateral scent glands in the field during a cyclical outbreak of vole populations.</p>","PeriodicalId":54862,"journal":{"name":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","volume":" ","pages":"431-441"},"PeriodicalIF":2.1,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10569915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tonotopic Ca2+ dynamics and sound processing in auditory interneurons of the bush-cricket Mecopoda elongata. 丛林蟋蟀(Mecopoda elongata)听觉中间神经元的同调 Ca2+ 动态和声音处理。
IF 2.1 4区 心理学
Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology Pub Date : 2024-05-01 Epub Date: 2023-05-24 DOI: 10.1007/s00359-023-01638-6
T Bayley, B Hedwig
{"title":"Tonotopic Ca<sup>2+</sup> dynamics and sound processing in auditory interneurons of the bush-cricket Mecopoda elongata.","authors":"T Bayley, B Hedwig","doi":"10.1007/s00359-023-01638-6","DOIUrl":"10.1007/s00359-023-01638-6","url":null,"abstract":"<p><p>Two auditory neurons, TN-1 and ON-1, in the bush-cricket, Mecopoda elongata, have large dendritic arborisations which receive excitatory synaptic inputs from tonotopically organised axonal terminals of auditory afferents in the prothoracic ganglion. By combining intracellular microelectrode recording with calcium imaging we demonstrate that the dendrites of both neurons show a clear Ca<sup>2+</sup> signal in response to broad-frequency species-specific chirps. Due to the organisation of the afferents frequency specific auditory activation should lead to local Ca<sup>2+</sup> increases in their dendrites. In response to 20 ms sound pulses the dendrites of both neurons showed tonotopically organised Ca<sup>2+</sup> increases. In ON-1 we found no evidence for a tonotopic organisation of the Ca<sup>2+</sup> signal related to axonal spike activity or for a Ca<sup>2+</sup> response related to contralateral inhibition. The tonotopic organisation of the afferents may facilitate frequency-specific adaptation in these auditory neurons through localised Ca<sup>2+</sup> increases in their dendrites. By combining 10 and 40 kHz test pulses and adaptation series, we provide evidence for frequency-specific adaptation in TN-1 and ON-1. By reversible deactivating of the auditory afferents and removing contralateral inhibition, we show that in ON-1 spike activity and Ca<sup>2+</sup> responses increased but frequency-specific adaptation was not evident.</p>","PeriodicalId":54862,"journal":{"name":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","volume":" ","pages":"353-369"},"PeriodicalIF":2.1,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11106180/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9518470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信