一种雌雄鸣唱广泛的雀科鸟类的鸣唱系统神经解剖学和即时早期基因表达。

IF 1.9 4区 心理学 Q3 BEHAVIORAL SCIENCES
Evangeline M Rose, Chelsea M Haakenson, Aliyah Patel, Shivika Gaind, Benjamin D Shank, Gregory F Ball
{"title":"一种雌雄鸣唱广泛的雀科鸟类的鸣唱系统神经解剖学和即时早期基因表达。","authors":"Evangeline M Rose, Chelsea M Haakenson, Aliyah Patel, Shivika Gaind, Benjamin D Shank, Gregory F Ball","doi":"10.1007/s00359-023-01651-9","DOIUrl":null,"url":null,"abstract":"<p><p>Birdsong is a relatively well-studied behavior, both due to its importance as a model for vocal production learning and as an intriguing complex social behavior. Until the last few decades, work on birdsong focused almost exclusively on males. However, it is now widely accepted that female song not only exists, but is fairly common throughout the oscine passerines. Despite this, and the large number of researchers who have begun exploring female song in the field, researchers in the lab have been slow to adopt model species with female song. Studying female song in the lab is critical for our understanding of sex-specific factors in the physiology controlling this fascinating behavior. Additionally, as a model for vocal production learning in humans, understanding the mechanistic and neuroendocrine control of female song is clearly important. In this study, we examined the red-cheeked cordon bleu (RCCB), an Estrildid finch species with extensive female song. Specifically, we found that there were no significant sex differences in circulating levels of testosterone and progesterone, nor in song production rate. There were no significant differences in cell densities in the three nuclei of the song control system we examined. Additionally, the volume of the robust nucleus of the arcopallium was not significantly different and we report the smallest sex difference in HVC yet published in a songbird. Finally, we demonstrated similar levels of motor driven immediate early gene expression in both males and females after song production.</p>","PeriodicalId":54862,"journal":{"name":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Song system neuroanatomy, and immediate early gene expression in a finch species with extensive male and female song.\",\"authors\":\"Evangeline M Rose, Chelsea M Haakenson, Aliyah Patel, Shivika Gaind, Benjamin D Shank, Gregory F Ball\",\"doi\":\"10.1007/s00359-023-01651-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Birdsong is a relatively well-studied behavior, both due to its importance as a model for vocal production learning and as an intriguing complex social behavior. Until the last few decades, work on birdsong focused almost exclusively on males. However, it is now widely accepted that female song not only exists, but is fairly common throughout the oscine passerines. Despite this, and the large number of researchers who have begun exploring female song in the field, researchers in the lab have been slow to adopt model species with female song. Studying female song in the lab is critical for our understanding of sex-specific factors in the physiology controlling this fascinating behavior. Additionally, as a model for vocal production learning in humans, understanding the mechanistic and neuroendocrine control of female song is clearly important. In this study, we examined the red-cheeked cordon bleu (RCCB), an Estrildid finch species with extensive female song. Specifically, we found that there were no significant sex differences in circulating levels of testosterone and progesterone, nor in song production rate. There were no significant differences in cell densities in the three nuclei of the song control system we examined. Additionally, the volume of the robust nucleus of the arcopallium was not significantly different and we report the smallest sex difference in HVC yet published in a songbird. Finally, we demonstrated similar levels of motor driven immediate early gene expression in both males and females after song production.</p>\",\"PeriodicalId\":54862,\"journal\":{\"name\":\"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1007/s00359-023-01651-9\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s00359-023-01651-9","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

鸟鸣是一种研究相对较多的行为,因为它既是发声学习的一个重要模型,又是一种引人入胜的复杂社会行为。直到最近几十年,有关鸟鸣的研究几乎都集中在雄性鸟类身上。然而,现在人们普遍认为,雌性鸟鸣不仅存在,而且在整个鸟类中相当普遍。尽管如此,大量研究人员已经开始在野外探索雌性鸟鸣,但实验室中的研究人员却迟迟没有采用雌性鸟鸣的模式物种。在实验室中研究雌鸟鸣唱对于我们了解控制这种迷人行为的生理性别特异性因素至关重要。此外,作为人类发声学习的模型,了解雌性鸣唱的机制和神经内分泌控制显然非常重要。在这项研究中,我们研究了红颊绶带鸟(RCCB),这是一种具有大量雌性鸣声的鸟类。具体而言,我们发现睾酮和孕酮的循环水平以及鸣唱率没有明显的性别差异。在我们研究的鸣唱控制系统的三个细胞核中,细胞密度也没有明显差异。此外,弧核粗壮核的体积也没有显著差异,我们报告了迄今为止在鸣禽中发现的最小性别差异。最后,我们证明雌雄鸣禽在鸣唱后的运动驱动即刻早期基因表达水平相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Song system neuroanatomy, and immediate early gene expression in a finch species with extensive male and female song.

Song system neuroanatomy, and immediate early gene expression in a finch species with extensive male and female song.

Birdsong is a relatively well-studied behavior, both due to its importance as a model for vocal production learning and as an intriguing complex social behavior. Until the last few decades, work on birdsong focused almost exclusively on males. However, it is now widely accepted that female song not only exists, but is fairly common throughout the oscine passerines. Despite this, and the large number of researchers who have begun exploring female song in the field, researchers in the lab have been slow to adopt model species with female song. Studying female song in the lab is critical for our understanding of sex-specific factors in the physiology controlling this fascinating behavior. Additionally, as a model for vocal production learning in humans, understanding the mechanistic and neuroendocrine control of female song is clearly important. In this study, we examined the red-cheeked cordon bleu (RCCB), an Estrildid finch species with extensive female song. Specifically, we found that there were no significant sex differences in circulating levels of testosterone and progesterone, nor in song production rate. There were no significant differences in cell densities in the three nuclei of the song control system we examined. Additionally, the volume of the robust nucleus of the arcopallium was not significantly different and we report the smallest sex difference in HVC yet published in a songbird. Finally, we demonstrated similar levels of motor driven immediate early gene expression in both males and females after song production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
14.30%
发文量
67
审稿时长
1 months
期刊介绍: The Journal of Comparative Physiology A welcomes original articles, short reviews, and short communications in the following fields: - Neurobiology and neuroethology - Sensory physiology and ecology - Physiological and hormonal basis of behavior - Communication, orientation, and locomotion - Functional imaging and neuroanatomy Contributions should add to our understanding of mechanisms and not be purely descriptive. The level of organization addressed may be organismic, cellular, or molecular. Colour figures are free in print and online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信