Journal of Dynamic Systems Measurement and Control-Transactions of the Asme最新文献

筛选
英文 中文
Reinforcement Learning for Active Noise Control in a Hydraulic System 基于强化学习的液压系统噪声主动控制
IF 1.7 4区 计算机科学
E. Anderson, B. Steward
{"title":"Reinforcement Learning for Active Noise Control in a Hydraulic System","authors":"E. Anderson, B. Steward","doi":"10.1115/1.4049556","DOIUrl":"https://doi.org/10.1115/1.4049556","url":null,"abstract":"\u0000 Hydraulic pressure ripple in a pump, as a result of converting rotational power to fluid power, continues to be a problem faced when developing hydraulic systems due to the resulting noise generated. In this paper, we present simulation results from leveraging an actor-critic reinforcement learning method as the control method for active noise control in a hydraulic system. The results demonstrate greater than 96%, 81%, and 61% pressure ripple reduction for the first, second, and third harmonics, respectively, in a single operating point test, along with the advantage of feed forward like control for high bandwidth response during dynamic changes in the operating point. It also demonstrates the disadvantage of long convergence times while the controller is effectively learning the optimal control policy. Additionally, this work demonstrates the ancillary benefit of the elimination of the injection of white noise for the purpose of system identification in the current state of the art.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82845609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Track-Following Controller Design Using an Active Magnetic Bearing for Measurement of the Rotor Dynamics Coefficient of the Annular Seal 采用主动磁轴承测量环形密封转子动力学系数的轨迹跟踪控制器设计
IF 1.7 4区 计算机科学
S. Yabui, H. Inoue, T. Inoue
{"title":"Track-Following Controller Design Using an Active Magnetic Bearing for Measurement of the Rotor Dynamics Coefficient of the Annular Seal","authors":"S. Yabui, H. Inoue, T. Inoue","doi":"10.1115/1.4049542","DOIUrl":"https://doi.org/10.1115/1.4049542","url":null,"abstract":"\u0000 This study introduces a track-following controller design to measure the rotor dynamics (RD) coefficient of the annular seal using active magnetic bearings. The annular seal is implemented contiguously to prevent leakage of fluid between the rotating shaft and stationary area of a rotating machine. The force caused by the seal at the contact point can cause vibrations, which should be identified for designing rotating machinery. The RD force is coupled with mechanical and fluid dynamics. Moreover, the dynamics depend on the operating conditions of the rotating machine, namely, the rotating speed and orbit of the rotating shaft. This study proposes a control system for the active magnetic bearing to measure the RD force directly at the arbitrary operating condition. The main controller is designed to satisfy a criterion of the frequency characteristics of the rotating system. In addition, the control system employs adaptive feed-forward cancellation (AFC). This can estimate and compensate for the RD force in the control system simultaneously. The experimental results indicate that the control system can achieve an arbitrary operating condition and measure the RD coefficient of the annular seal in real-time. As a result, the RD coefficient is identified based on the equation of motion.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89649339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quadratic Constrained Periodic Optimization for Bandlimited Linear Systems Via the Fourier-Based Method 基于傅里叶方法的带限线性系统的二次约束周期优化
IF 1.7 4区 计算机科学
G. Moretti, L. Zaccarian, F. Blanchini
{"title":"Quadratic Constrained Periodic Optimization for Bandlimited Linear Systems Via the Fourier-Based Method","authors":"G. Moretti, L. Zaccarian, F. Blanchini","doi":"10.1115/1.4049541","DOIUrl":"https://doi.org/10.1115/1.4049541","url":null,"abstract":"\u0000 Motivated by engineering applications, we address bounded steady-state optimal control of linear dynamical systems undergoing steady-state bandlimited periodic oscillations. The optimization can be cast as a minimization problem by expressing the state and the input as finite Fourier series expansions, and using the expansions coefficients as parameters to be optimized. With this parametrization, we address linear quadratic problems involving periodic bandlimited dynamics by using quadratic minimization with parametric time-dependent constraints. We hence investigate the implications of a discretization of linear continuous time constraints and propose an algorithm that provides a feasible suboptimal solution whose cost is arbitrarily close to the optimal cost for the original constrained steady-state problem. Finally, we discuss practical case studies that can be effectively tackled with the proposed framework, including optimal control of DC/AC power converters, and optimal energy harvesting from pulsating mechanical energy sources.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91073467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Online Spark Timing Optimization With Complex High-Fidelity Combustion Phasing, Knock, and Coefficient of Variation of IMEP Models 在线火花定时优化与复杂的高保真燃烧相位,爆震,和系数变化的IMEP模型
IF 1.7 4区 计算机科学
Qilun Zhu, R. Prucka, Shu Wang, Michael J Prucka
{"title":"Online Spark Timing Optimization With Complex High-Fidelity Combustion Phasing, Knock, and Coefficient of Variation of IMEP Models","authors":"Qilun Zhu, R. Prucka, Shu Wang, Michael J Prucka","doi":"10.1115/1.4049733","DOIUrl":"https://doi.org/10.1115/1.4049733","url":null,"abstract":"\u0000 The combustion phasing of spark ignition (SI) engines is traditionally regulated with map-based spark timing (SPKT) control. The calibration of these maps is time-consuming for SI engines with a high number of control actuators. This paper proposes three online SPKT optimization algorithms that can utilize control-oriented semiphysics-based combustion models making the SPKT control algorithm more adaptive to different engine designs. These three SPKT optimizers do not require model inversion and derivative information. These methods also preserve the dependence between combustion phasing, knock, and coefficient of variation (COV) of indicated mean effective pressure (IMEP) models to avoid evaluating combustion models multiple times within one iteration. The two-phase and constraint relaxation methods are derived from direct search optimization theories. The recursive least square (RLS) polynomial fitting method can be considered as a virtual extreme seeking (ES) process that converts the original “black” box nonlinear constrained optimization into the solution of three low-order polynomial equations. Although these three online SPKT optimization approaches have unique properties making them preferable with certain types of combustion models, simulation and test results show that all of them can find the optimal SPKT with less than 10 evaluations of the combustion models. This fact makes it possible to implement the proposed model-based SPKT control strategy in future engine control units (ECUs).","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78314098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Particle Filter and Long Short-Term Memory Fusion Technique for Lithium-Ion Battery Remaining Useful Life Prediction 锂离子电池剩余使用寿命预测的粒子滤波与长短期记忆融合技术
IF 1.7 4区 计算机科学
Xiaosong Hu, Yang Xin, F. Feng, Kailong Liu, Xianke Lin
{"title":"A Particle Filter and Long Short-Term Memory Fusion Technique for Lithium-Ion Battery Remaining Useful Life Prediction","authors":"Xiaosong Hu, Yang Xin, F. Feng, Kailong Liu, Xianke Lin","doi":"10.1115/1.4049234","DOIUrl":"https://doi.org/10.1115/1.4049234","url":null,"abstract":"\u0000 Accurate prediction of the remaining useful life (RUL) of lithium-ion batteries can improve the durability, reliability, and maintainability of battery system operation in electric vehicles. To achieve high-accuracy RUL predictions, it is necessary to develop an effective method for long-term nonlinear degradation prediction and quantify the uncertainty of the prediction results. To this end, this paper proposes a hybrid approach for lithium-ion battery RUL prediction based on particle filter (PF) and long short-term memory (LSTM) neural network. First, based on the training set, the model parameters are iteratively updated using the PF algorithm. Second, the LSTM model parameters are obtained using the training set. The mean and standard deviation in the prediction stage are obtained through Monte Carlo (MC) dropout. Finally, the mean value predicted by MC-dropout is used as the measurement for the PF in the prediction phase, the standard deviation represents the uncertainty of the prediction result, and the mean and standard deviation are integrated into the measurement equation of the model. The experimental results show that the proposed hybrid approach has better prediction accuracy than the PF, LSTM algorithm, and two other types of hybrid approaches. The hybrid approach can obtain a narrower confidence interval.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81926004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Transversely Stable Extended Kalman Filters for Systems on Manifolds in Euclidean Spaces 欧几里德空间流形上系统的横向稳定扩展卡尔曼滤波
IF 1.7 4区 计算机科学
Jae-Hyeon Park, Karmvir Singh Phogat, Whimin Kim, D. Chang
{"title":"Transversely Stable Extended Kalman Filters for Systems on Manifolds in Euclidean Spaces","authors":"Jae-Hyeon Park, Karmvir Singh Phogat, Whimin Kim, D. Chang","doi":"10.1115/1.4049540","DOIUrl":"https://doi.org/10.1115/1.4049540","url":null,"abstract":"\u0000 In this article, we devise a variant of the extended Kalman filter that can be generally applied to systems on manifolds with simplicity and low computational cost. We extend a given system on a manifold to an ambient open set in Euclidean space and modify the system such that the extended system is transversely stable on the manifold. Then, we apply the standard extended Kalman filter derived in Euclidean space to the modified dynamics. This method is efficient in terms of computation and accurate in comparison with the standard extended Kalman filter. It has the merit that we can apply various Kalman filters derived in Euclidean space including extended Kalman filters for state estimation for systems defined on manifolds. The proposed method is successfully applied to the rigid body attitude dynamics whose configuration space is the special orthogonal group in three dimensions.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78095941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Optimal Design for Energy Harvesting Vibration Absorbers 能量收集减振器的优化设计
IF 1.7 4区 计算机科学
Jiqiang Wang
{"title":"Optimal Design for Energy Harvesting Vibration Absorbers","authors":"Jiqiang Wang","doi":"10.1115/1.4049235","DOIUrl":"https://doi.org/10.1115/1.4049235","url":null,"abstract":"\u0000 Energy harvesting vibration absorbers (EHVAs) represent a novel type of vibration absorbers where the dissipated energy is harnessed in the absorber system. Conventional optimization-based methods can be utilized for optimal design of EHVAs, but this usually involves in iterative design procedures, particularly for approaching performance limits. In this note, a visualization technique is proposed. The problem of existence and uniqueness solutions is addressed; the intimate relationship between energy harvesting and vibration suppression performances is disclosed; and the fundamental issue of determining performance limit with this visualized method is solved. These features form solid contributions of the current proposal over those optimization-based design methods. The corresponding design procedures are illustrated and the claims are further validated through real-time simulations to the optimal design of EHVAs.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90743704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Lumped-Parameter Response Time Models for Pneumatic Circuit Dynamics 气动回路动力学的集总参数响应时间模型
IF 1.7 4区 计算机科学
Andrew A. Stanley, A. Amini, C. Glick, Nathan S. Usevitch, Yigit Menguc, Sean Keller
{"title":"Lumped-Parameter Response Time Models for Pneumatic Circuit Dynamics","authors":"Andrew A. Stanley, A. Amini, C. Glick, Nathan S. Usevitch, Yigit Menguc, Sean Keller","doi":"10.1115/1.4049009","DOIUrl":"https://doi.org/10.1115/1.4049009","url":null,"abstract":"\u0000 Resistor–capacitor (RC) response time models for pressurizing and depressurizing a pneumatic capacitor (mass accumulator) through a resistor (flow restriction) comprise a framework to systematically analyze complex fluidic circuits. A model for pneumatic resistance is derived from a combination of fundamental fluid mechanics and experimental results. Models describing compressible fluid capacitance are derived from thermodynamic first principles and validated experimentally. The models are combined to derive the ordinary differential equations that describe the RC dynamics. These equations are solved analytically for rigid capacitors and numerically for deformable capacitors to generate pressure response curves as a function of time. The dynamic pressurization and depressurization response times to reach 63.2% (or 1−e−1) of exponential decay are validated in simple pneumatic circuits with combinations of flow restrictions ranging from 100 μm to 1 mm in diameter, source pressures ranging from 5 to 200 kPa, and capacitor volumes of 0.5 to 16 mL. Our RC models predict the response times, which range from a few milliseconds to multiple seconds depending on the combination, with a coefficient of determination of r2=0.983. The utility of the models is demonstrated in a multicomponent fluidic circuit to find the optimal diameter of tubing between a three-way electromechanical valve and a pneumatic capacitor to minimize the response time for the changing pressure in the capacitor. These lumped-parameter models represent foundational blocks upon which timing models of pneumatic circuits can be built for a variety of applications from soft robotics and industrial automation to high-speed microfluidics.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79328613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Optimized Artificial Neural Network Model and Compensator in Model Predictive Control for Anomaly Mitigation 异常预测控制中优化的人工神经网络模型和补偿器
IF 1.7 4区 计算机科学
Seong Hyeon Hong, Jackson Cornelius, Yi Wang, K. Pant
{"title":"Optimized Artificial Neural Network Model and Compensator in Model Predictive Control for Anomaly Mitigation","authors":"Seong Hyeon Hong, Jackson Cornelius, Yi Wang, K. Pant","doi":"10.1115/1.4049130","DOIUrl":"https://doi.org/10.1115/1.4049130","url":null,"abstract":"\u0000 This paper presents a new artificial neural network (ANN)-based system model that concatenates an optimized artificial neural network (OANN) and a neural network compensator (NNC) in series to capture temporally varying system dynamics caused by slow-paced degradation/anomaly. The OANN comprises a complex, fully connected multilayer perceptron, trained offline using nominal, anomaly free data, and remains unchanged during online operation. Its hyperparameters are selected using genetic algorithm-based meta-optimization. The compact NNC is updated continuously online using collected sensor data to capture the variations in system dynamics, rectify the OANN prediction, and eventually minimize the discrepancy between the OANN-predicted and actual response. The combined OANN–NNC model then reconfigures the model predictive control (MPC) online to alleviate disturbances. Through numerical simulation using an unmanned quadrotor as an example, the proposed model demonstrates salient capabilities to mitigate anomalies introduced to the system while maintaining control performance. We compare the OANN–NNC with other online modeling techniques (adaptive ANN and multinetwork model), showing it outperforms them in reference tracking of altitude control by at least 0.5 m and yaw control by 1 deg. Moreover, its robustness is confirmed by the MPC consistency regardless of anomaly presence, eliminating the need for additional model management during online operation.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84276433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Theoretical Control-Centric Modeling for Precision Model-Based Sliding Mode Control of a Hydraulic Artificial Muscle Actuator 基于精确模型的液压人工肌肉作动器滑模控制的理论控制中心建模
IF 1.7 4区 计算机科学
Jonathon E. Slightam, M. Nagurka
{"title":"Theoretical Control-Centric Modeling for Precision Model-Based Sliding Mode Control of a Hydraulic Artificial Muscle Actuator","authors":"Jonathon E. Slightam, M. Nagurka","doi":"10.1115/1.4049565","DOIUrl":"https://doi.org/10.1115/1.4049565","url":null,"abstract":"\u0000 Artificial muscles (AMs) traditionally rely on pneumatic sources of fluid power. The use of hydraulics can increase the power and force to weight and volume ratios of AM actuators. This paper develops a control-centric third-order single-input single-output (SISO) lumped-parameter dynamic model and sliding mode position controller based on Filippov's principle of equivalent dynamics for a braided hydraulic artificial muscle (HAM) actuator. The model predicts the nonlinear behavior of the HAM free contraction and captures the fluid and actuator nonlinear dynamic interactions in addition to the braid deformation. Model simulations are compared to experimental results for quasi-static pressurization, isometric pressurization, and open-loop square wave commands at 0.25, 0.5, and 1 Hz. Experiments of sine wave tracking at 0.25, 0.5, and 1 Hz and continuous square wave tracking at 0.067 Hz are conducted using a sliding mode controller (SMC) derived from the model. The SMC achieves a steady-state error of 6 μm at multiple setpoints within the actuator's 17 mm stroke. Compared to a proportional-integral-derivative (PID) controller, the SMC root-mean-square (RMS) error, mean error, and absolute maximum error are reduced on average by 53%, 61%, and 44%, respectively, demonstrating the benefit of model-based approaches for controlling HAMs.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73157620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信