Lumped-Parameter Response Time Models for Pneumatic Circuit Dynamics

IF 1.7 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
Andrew A. Stanley, A. Amini, C. Glick, Nathan S. Usevitch, Yigit Menguc, Sean Keller
{"title":"Lumped-Parameter Response Time Models for Pneumatic Circuit Dynamics","authors":"Andrew A. Stanley, A. Amini, C. Glick, Nathan S. Usevitch, Yigit Menguc, Sean Keller","doi":"10.1115/1.4049009","DOIUrl":null,"url":null,"abstract":"\n Resistor–capacitor (RC) response time models for pressurizing and depressurizing a pneumatic capacitor (mass accumulator) through a resistor (flow restriction) comprise a framework to systematically analyze complex fluidic circuits. A model for pneumatic resistance is derived from a combination of fundamental fluid mechanics and experimental results. Models describing compressible fluid capacitance are derived from thermodynamic first principles and validated experimentally. The models are combined to derive the ordinary differential equations that describe the RC dynamics. These equations are solved analytically for rigid capacitors and numerically for deformable capacitors to generate pressure response curves as a function of time. The dynamic pressurization and depressurization response times to reach 63.2% (or 1−e−1) of exponential decay are validated in simple pneumatic circuits with combinations of flow restrictions ranging from 100 μm to 1 mm in diameter, source pressures ranging from 5 to 200 kPa, and capacitor volumes of 0.5 to 16 mL. Our RC models predict the response times, which range from a few milliseconds to multiple seconds depending on the combination, with a coefficient of determination of r2=0.983. The utility of the models is demonstrated in a multicomponent fluidic circuit to find the optimal diameter of tubing between a three-way electromechanical valve and a pneumatic capacitor to minimize the response time for the changing pressure in the capacitor. These lumped-parameter models represent foundational blocks upon which timing models of pneumatic circuits can be built for a variety of applications from soft robotics and industrial automation to high-speed microfluidics.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1115/1.4049009","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 12

Abstract

Resistor–capacitor (RC) response time models for pressurizing and depressurizing a pneumatic capacitor (mass accumulator) through a resistor (flow restriction) comprise a framework to systematically analyze complex fluidic circuits. A model for pneumatic resistance is derived from a combination of fundamental fluid mechanics and experimental results. Models describing compressible fluid capacitance are derived from thermodynamic first principles and validated experimentally. The models are combined to derive the ordinary differential equations that describe the RC dynamics. These equations are solved analytically for rigid capacitors and numerically for deformable capacitors to generate pressure response curves as a function of time. The dynamic pressurization and depressurization response times to reach 63.2% (or 1−e−1) of exponential decay are validated in simple pneumatic circuits with combinations of flow restrictions ranging from 100 μm to 1 mm in diameter, source pressures ranging from 5 to 200 kPa, and capacitor volumes of 0.5 to 16 mL. Our RC models predict the response times, which range from a few milliseconds to multiple seconds depending on the combination, with a coefficient of determination of r2=0.983. The utility of the models is demonstrated in a multicomponent fluidic circuit to find the optimal diameter of tubing between a three-way electromechanical valve and a pneumatic capacitor to minimize the response time for the changing pressure in the capacitor. These lumped-parameter models represent foundational blocks upon which timing models of pneumatic circuits can be built for a variety of applications from soft robotics and industrial automation to high-speed microfluidics.
气动回路动力学的集总参数响应时间模型
通过电阻(限流)对气动电容(质量蓄能器)进行加压和减压的电阻-电容(RC)响应时间模型构成了一个系统分析复杂流体回路的框架。结合流体力学基础和实验结果,导出了气动阻力模型。描述可压缩流体电容的模型是从热力学第一原理推导出来的,并经过实验验证。将这些模型结合起来,推导出描述RC动力学的常微分方程。对刚性电容器进行了解析求解,对变形电容器进行了数值求解,得到了随时间变化的压力响应曲线。动态增压和减压响应时间达到指数衰减的63.2%(或1−e−1),在简单的气动回路中验证,流量限制范围为100 μm至1 mm直径,源压力范围为5至200 kPa,电容器体积为0.5至16 mL。我们的RC模型预测响应时间,其范围从几毫秒到数秒,取决于组合,决定系数r2=0.983。在一个多组件流控回路中,利用该模型找到三通机电阀与气动电容器之间的最佳管径,以最小化电容器压力变化的响应时间。这些集总参数模型代表了气动回路的定时模型的基础模块,可以为各种应用从软机器人和工业自动化到高速微流体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
11.80%
发文量
79
审稿时长
24.0 months
期刊介绍: The Journal of Dynamic Systems, Measurement, and Control publishes theoretical and applied original papers in the traditional areas implied by its name, as well as papers in interdisciplinary areas. Theoretical papers should present new theoretical developments and knowledge for controls of dynamical systems together with clear engineering motivation for the new theory. New theory or results that are only of mathematical interest without a clear engineering motivation or have a cursory relevance only are discouraged. "Application" is understood to include modeling, simulation of realistic systems, and corroboration of theory with emphasis on demonstrated practicality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信