{"title":"Accurate detection of vehicle, pedestrian, cyclist and wheelchair from roadside light detection and ranging sensors","authors":"Junxuan Zhao , Hao Xu , Zhihui Chen , Hongchao Liu","doi":"10.1080/15472450.2023.2243816","DOIUrl":"10.1080/15472450.2023.2243816","url":null,"abstract":"<div><div>Accurate detection plays a critical role in improving the safety situation of vulnerable road users. This study extends infrastructure-based LiDAR application to all three major vulnerable road user groups including pedestrians, cyclists, and wheelchair users. Two critical problems for accurate detection of small-sized road users are scanning angle variability and feature fluctuation. To address these issues, a feature-based classification method combined with prior LiDAR trajectory information is developed. Effective dimension-related features are proposed and five classifiers including artificial neural network (ANN), random forest (RF), adaptive boosting (AdaBoost), random under-sampling boosting (RUSBoost), and long short-term memory (LSTM) are tested with a novel feature engineering process. A total of seven features are selected from the point cloud of clusters for vehicle/pedestrian/cyclist/wheelchair classification. By updating these significant features based on prior information of the entire trajectory, the performance of road user classification (imbalanced datasets) has been significantly improved. Experimental study is conducted to examine the recall rate, F1-score, and AUC of vehicles, pedestrians, cyclists, and wheelchairs before and after integration with prior trajectory information. The result shows the trained AdaBoost, RUSBoost, and LSTM classifiers with prior trajectory information can achieve recall/F1-score/AUC: (1) Low traffic volumes – vehicles (100%/99.96%/99.96%), pedestrians (99.96%/99.96%/99.97%), cyclists (99.74%/99.45%/99.67%), and wheelchairs (99.22%/99.68%/99.01%) and (2) Moderate traffic volumes – vehicles (99.39%/99.44%/99.69%), pedestrians (98.33%/97.99%/98.64%), and cyclists (95.41%/94.29%/94.40%), using 32-laser LiDAR sensors (10 Hz).</div></div>","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"28 6","pages":"Pages 904-920"},"PeriodicalIF":2.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77654391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Infrastructure sensor-based cooperative perception for early stage connected and automated vehicle deployment","authors":"Chenxi Chen , Qing Tang , Xianbiao Hu , Zhitong Huang","doi":"10.1080/15472450.2023.2257596","DOIUrl":"10.1080/15472450.2023.2257596","url":null,"abstract":"<div><div>Infrastructure-based sensors provide a potentially promising solution to support the wide adoption of connected and automated vehicles (CAVs) technologies at an early stage. For connected vehicles with lower level of automation that do not have perception sensors, infrastructure sensors will significantly boost its capability to understand the driving context. Even if a full suite of sensors is available on a vehicle with higher level of automation, infrastructure sensors can support overcome the issues of occlusion and limited sensor range. To this end, a cooperative perception modeling framework is proposed in this manuscript. In particular, the modeling focus is placed on a key technical challenge, time delay in the cooperative perception process, which is of vital importance to the synchronization, perception, and localization modules. A constant turn-rate velocity (CTRV) model is firstly developed to estimate the future motion states of a vehicle. A delay compensation and fusion module is presented next, to compensate for the time delay due to the computing time and communication latency. Last but not the least, as the behavior of moving objects (i.e., vehicles, cyclists, and pedestrians) is nonlinear in both position and speed aspects, an unscented Kalman filter (UKF) algorithm is developed to improve object tracking accuracy considering communication time delay between the ego vehicle and infrastructure-based LiDAR sensors. Simulation experiments are performed to test the feasibility and evaluate the performance of the proposed algorithm, which shows satisfactory results.</div></div>","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"28 6","pages":"Pages 956-970"},"PeriodicalIF":2.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135059629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advisory versus automated dynamic eco-driving at signalized intersections: lessons learnt from empirical evidence and simulation experiments","authors":"Evangelos Mintsis , Eleni I. Vlahogianni , Evangelos Mitsakis , Georgia Aifadopoulou","doi":"10.1080/15472450.2023.2289118","DOIUrl":"10.1080/15472450.2023.2289118","url":null,"abstract":"<div><div>Research in the field of dynamic eco-driving has been primarily coupled with connected and automated vehicles which are equipped with automation functions that can accurately execute energy-efficient speed advice. Advisory dynamic eco-driving that entails driver adaptation to energy-efficient speed advice has received lesser attention although mixed traffic is expected to prevail in the forthcoming decades. This study developed a decision tree model based on real-world data collected during the pilot deployment of an advisory speed advice service along an urban arterial corridor to emulate driver adaptation to speed advice. The decision tree model was integrated into the control logic of an enhanced velocity planning algorithm to replicate the behavior of manually driven connected vehicles along dynamic eco-driving service zones in a microscopic traffic simulation environment. The conducted simulation analysis encompassed scenarios with varying penetration rates of advisory dynamic eco-driving technology, automated dynamic eco-driving technology and manually driven unequipped vehicles. Evaluation of simulation scenarios was based on the estimation of several environmental, traffic efficiency and surrogate safety measures. Simulation results indicated that performance of advisory dynamic eco-driving depends on driver adaptation to speed advice and ranges between that of manually driven unequipped vehicles and its automated counterpart. Moreover, geometrical and operational characteristics of intersection approaches comprising dynamic eco-driving service zones can influence driver adaptation to speed advice. Environmental, safety and traffic efficiency benefits are maximized in the case of vehicle fleets fully equipped with automated dynamic eco-driving systems.</div></div>","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"28 6","pages":"Pages 1044-1063"},"PeriodicalIF":2.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138520098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Eliminating the impacts of traffic volume variation on before and after studies: a causal inference approach","authors":"Xiaobo Ma , Abolfazl Karimpour , Yao-Jan Wu","doi":"10.1080/15472450.2023.2245327","DOIUrl":"10.1080/15472450.2023.2245327","url":null,"abstract":"<div><div>A before and after study framework measures the outcomes in a group of participants before introducing an intervention, and then again afterward. In this study, a before and after study framework is adopted to evaluate the effectiveness of transportation policies and emerging technologies. Generally, the outcome of every before and after study will help decision-makers to monitor and understand the effects of interventions and to make sound decisions. However, many factors such as seasonal factors, holidays, and lane closures might interfere with the evaluation process by inducing variation in traffic volume during the before and after periods. In practice, limited effort has been made to eliminate the effects of these factors. In this study, an extreme gradient boosting (XGBoost)-based propensity score matching (PSM) method is proposed to reduce the biases caused by traffic volume variation during the before and after periods. In order to evaluate the effectiveness of the proposed method, a corridor in the City of Chandler, Arizona where an advanced traffic signal control system has been recently implemented was selected. The results indicated that the proposed method can effectively eliminate the variation in traffic volume caused by the COVID-19 during the evaluation process. In addition, the results of the t-test and Kolmogorov-Smirnov (KS) test demonstrated that the proposed method outperforms other state-of-the-art PSM methods. The application of the proposed method is also transferrable to other before and after evaluation studies and can significantly assist transportation engineers to eliminate the impacts of traffic volume variation on the evaluation process.</div></div>","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"28 6","pages":"Pages 921-935"},"PeriodicalIF":2.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84744954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lei Wei , Peng Chen , Yu Mei , Jian Sun , Yunpeng Wang
{"title":"A hierarchical control framework for alleviating network traffic bottleneck congestion using vehicle trajectory data","authors":"Lei Wei , Peng Chen , Yu Mei , Jian Sun , Yunpeng Wang","doi":"10.1080/15472450.2023.2270428","DOIUrl":"10.1080/15472450.2023.2270428","url":null,"abstract":"<div><div>Traffic bottlenecks significantly influence the operation efficiency of large-scale road networks. Developing advanced control strategies for bottleneck optimization is a cost-efficient and critical way to deal with network congestion. However, the state-of-the-art studies on network congestion control focus on the topology level, which may fail to relieve congestion by addressing the root cause of bottleneck. This study proposed a hierarchical control framework for alleviating network traffic bottleneck congestion using vehicle trajectory data. First, the bottleneck-related sub-network (BRS) was identified by tracing vehicle trajectories upstream and downstream of the bottleneck based on the traffic flow propagation. Then, a hierarchical control framework was proposed for BRS optimization. Specifically, in the outer layer, i.e., the gating control layer, the multigated intersections in BRS were controlled <em>via</em> a multimemory deep Q-network approach to optimize the network traffic distribution. In the inner layer, i.e., the coordinated control layer, local intersection controllers were coordinated by adjusting the dynamic input and output streams of the bottleneck under the guidance of the outer layer controller, which helps balance the traffic pressure within BRS and avoids congestion transferring in the network. Both simulation and field experiments were conducted to verify the performance of the proposed hierarchical framework. Results reveal that the framework can effectively relieve network traffic congestion with decreased queue length and travel time.</div></div>","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"28 6","pages":"Pages 988-1010"},"PeriodicalIF":2.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136104005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Eco-friendly platooning operation algorithm of the electric vehicles","authors":"Joonwon Jang , Sung Il Kwag , Young Dae Ko","doi":"10.1080/15472450.2023.2209911","DOIUrl":"10.1080/15472450.2023.2209911","url":null,"abstract":"<div><div>Platooning is one of the promising technologies that maximizes the power efficiency of electric vehicles by decreasing the distances between the vehicles. Along with the development of autonomous driving technology, platooning is expected to be commercialized. Recent studies on the operation of platooning focused on power-efficient maintenance of platooning. However, power-efficient operation strategy is also needed for practical applications. Therefore, this study deals with platooning operations that can maximize the power efficiency of electric vehicles in various operational situations. In order to derive the operation method, a mathematical model structured with an objective function that minimizes power consumption is developed. To derive the solution of the mathematical model, a hybrid genetic algorithm is applied. The numerical experiments on four different operational situations are performed to verify the validity of the model and the solution procedure. The four situations consider overall situation that can happen during the platooning stage. The stages are formation, disassembly, join and breakaway of vehicles of platoon. Those four situations are decided upon since they can represent the general situation that can happen during platooning. As a result, the power-efficient driving patterns of electric vehicles are identified. After the development of electric and systematic technology, operational technology for platooning will collaborate for the further improvement. Therefore, throughout consideration of the formation of platooning, technology will expand the sustainability of technological development.</div></div>","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"28 6","pages":"Pages 775-792"},"PeriodicalIF":2.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91148916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michelangelo-Santo Gulino , Krzysztof Damaziak , Anita Fiorentino , Dario Vangi
{"title":"Handling inevitable collision states by Advanced Driver Assistance Systems functions: software-in-the-loop performance assessment of an injury risk-based logic in a “lane departure” scenario","authors":"Michelangelo-Santo Gulino , Krzysztof Damaziak , Anita Fiorentino , Dario Vangi","doi":"10.1080/15472450.2023.2277713","DOIUrl":"10.1080/15472450.2023.2277713","url":null,"abstract":"<div><div>The downward trend in the number of fatalities and serious injuries related to road accidents depends on the implementation of increasingly performing Advanced Driver Assistance Systems (ADAS) in the circulating fleet. The greatest benefit of the adoption of ADASs like Autonomous Emergency Braking (AEB) consists in limiting the frequency of impacts. However, in Inevitable Collision States (ICSs), the decrease in impact closing speed guaranteed by the AEB may not reduce the Injury Risk (IR) for the occupants: IR is a function of the vehicle’s velocity change in the collision (<span><math><mrow><mo>Δ</mo><mi>V</mi></mrow></math></span>) – a combination of impact closing speed and impact eccentricity. The work virtually analyses, in lane departure ICS scenarios, the performance of an adaptive steering and braking intervention logic based on instantaneous IR minimization. The adaptive logic reduces IR compared to the absence of intervention (down to 80 times lower) and to the AEB (down to 40 times lower) by leading the ego vehicle toward eccentric impact configurations. It is highlighted that full activation of the steer-by-wire system in 0.3 s allows the adaptive logic to also reduce the frequency of impacts; it is further evidenced that employing a function capable of modulating the braking level to minimize IR entails disadvantages from the IR perspective compared to the AEB: efficient intervention strategies on the steering are the only alternative for increasing the safety provided by high-performance ADASs. Finally, compared to previous literature, the study highlights high efficiencies of the adaptive logic in a wide range of ICS scenarios.</div></div>","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"28 6","pages":"Pages 1011-1031"},"PeriodicalIF":2.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135391417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparing the performance of metaheuristics on the Transit Network Frequency Setting Problem","authors":"İlyas Cihan Aksoy, Mehmet Metin Mutlu","doi":"10.1080/15472450.2024.2392722","DOIUrl":"https://doi.org/10.1080/15472450.2024.2392722","url":null,"abstract":"The Transit Network Frequency Setting Problem (TNFSP), an NP-Hard combinatorial optimization problem, has been frequently addressed in previous investigations, most of which employ metaheuristics. ...","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"8 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142247329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kong Li, Zhe Dai, Chen Zuo, Xuan Wang, Hua Cui, Huansheng Song, Mengying Cui
{"title":"Scene adaptation in adverse conditions: a multi-sensor fusion framework for roadside traffic perception","authors":"Kong Li, Zhe Dai, Chen Zuo, Xuan Wang, Hua Cui, Huansheng Song, Mengying Cui","doi":"10.1080/15472450.2024.2390844","DOIUrl":"https://doi.org/10.1080/15472450.2024.2390844","url":null,"abstract":"Robust roadside traffic perception requires integrating the strengths of multi-source sensors under various adverse conditions, which is challenging but indispensable for formulating effective traf...","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"9 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Afshin Jafari, Dhirendra Singh, Alan Both, Mahsa Abdollahyar, Lucy Gunn, Steve Pemberton, Billie Giles-Corti
{"title":"Activity-based and agent-based transport model of Melbourne: an open multi-modal transport simulation model for Greater Melbourne","authors":"Afshin Jafari, Dhirendra Singh, Alan Both, Mahsa Abdollahyar, Lucy Gunn, Steve Pemberton, Billie Giles-Corti","doi":"10.1080/15472450.2024.2372894","DOIUrl":"https://doi.org/10.1080/15472450.2024.2372894","url":null,"abstract":"Activity- and agent-based models for simulating transport systems have attracted significant attention in recent years. However, building these types of models at a city-wide level and including mo...","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"37 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141613114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}