Deep learning-based pedestrian trajectory prediction and risk assessment at signalized intersections using trajectory data captured through roadside LiDAR

IF 2.8 3区 工程技术 Q3 TRANSPORTATION
Shanglian Zhou , Hao Xu , Guohui Zhang , Tianwei Ma , Yin Yang
{"title":"Deep learning-based pedestrian trajectory prediction and risk assessment at signalized intersections using trajectory data captured through roadside LiDAR","authors":"Shanglian Zhou ,&nbsp;Hao Xu ,&nbsp;Guohui Zhang ,&nbsp;Tianwei Ma ,&nbsp;Yin Yang","doi":"10.1080/15472450.2023.2209912","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, rapid advancements in the Autonomous Vehicles (AVs) industry have greatly motivated the research and development in pedestrian trajectory prediction and risk assessment. One of the critical requirements for AVs is to predict the future trajectories of pedestrians and provide collision warnings in an accurate and prompt manner. Nevertheless, accurate prediction of pedestrian trajectories remains a technical challenge, mainly caused by the heterogeneity of pedestrian crossing behavior and uncertainties in vehicle-pedestrian interactions. This paper proposes a deep learning-based method for pedestrian trajectory prediction and risk assessment, using trajectory data extracted from roadside LiDAR data and corresponding signal phasing information at MLK and Georgia Avenue in Chattanooga, TN. Meanwhile, a set of criteria referred to as the risk factor is established to quantitatively evaluate the risk of the pedestrian crossing behavior, which also serves as a learnable feature. A Long Short-Term Memory (LSTM) network is proposed, which takes the following data as the input: the pedestrian trajectory data, signal phasing data, and risk factors from the past 10 steps. Meanwhile, the network predicts the pedestrian trajectory and risk factor at the future time step. In the experimental study, the root-mean-square errors between the predicted and ground truth <em>x</em> and <em>y</em> coordinates are 0.225 meters and 0.377 meters, respectively, and the F1 score value for the risk factor is 99.6%, demonstrating the efficacy of the proposed LSTM-based methodology on pedestrian trajectory prediction and risk assessment.</div></div>","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"28 6","pages":"Pages 793-805"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1547245023000828","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, rapid advancements in the Autonomous Vehicles (AVs) industry have greatly motivated the research and development in pedestrian trajectory prediction and risk assessment. One of the critical requirements for AVs is to predict the future trajectories of pedestrians and provide collision warnings in an accurate and prompt manner. Nevertheless, accurate prediction of pedestrian trajectories remains a technical challenge, mainly caused by the heterogeneity of pedestrian crossing behavior and uncertainties in vehicle-pedestrian interactions. This paper proposes a deep learning-based method for pedestrian trajectory prediction and risk assessment, using trajectory data extracted from roadside LiDAR data and corresponding signal phasing information at MLK and Georgia Avenue in Chattanooga, TN. Meanwhile, a set of criteria referred to as the risk factor is established to quantitatively evaluate the risk of the pedestrian crossing behavior, which also serves as a learnable feature. A Long Short-Term Memory (LSTM) network is proposed, which takes the following data as the input: the pedestrian trajectory data, signal phasing data, and risk factors from the past 10 steps. Meanwhile, the network predicts the pedestrian trajectory and risk factor at the future time step. In the experimental study, the root-mean-square errors between the predicted and ground truth x and y coordinates are 0.225 meters and 0.377 meters, respectively, and the F1 score value for the risk factor is 99.6%, demonstrating the efficacy of the proposed LSTM-based methodology on pedestrian trajectory prediction and risk assessment.
基于深度学习的行人轨迹预测和风险评估,使用路边激光雷达捕获的轨迹数据
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.80
自引率
19.40%
发文量
51
审稿时长
15 months
期刊介绍: The Journal of Intelligent Transportation Systems is devoted to scholarly research on the development, planning, management, operation and evaluation of intelligent transportation systems. Intelligent transportation systems are innovative solutions that address contemporary transportation problems. They are characterized by information, dynamic feedback and automation that allow people and goods to move efficiently. They encompass the full scope of information technologies used in transportation, including control, computation and communication, as well as the algorithms, databases, models and human interfaces. The emergence of these technologies as a new pathway for transportation is relatively new. The Journal of Intelligent Transportation Systems is especially interested in research that leads to improved planning and operation of the transportation system through the application of new technologies. The journal is particularly interested in research that adds to the scientific understanding of the impacts that intelligent transportation systems can have on accessibility, congestion, pollution, safety, security, noise, and energy and resource consumption. The journal is inter-disciplinary, and accepts work from fields of engineering, economics, planning, policy, business and management, as well as any other disciplines that contribute to the scientific understanding of intelligent transportation systems. The journal is also multi-modal, and accepts work on intelligent transportation for all forms of ground, air and water transportation. Example topics include the role of information systems in transportation, traffic flow and control, vehicle control, routing and scheduling, traveler response to dynamic information, planning for ITS innovations, evaluations of ITS field operational tests, ITS deployment experiences, automated highway systems, vehicle control systems, diffusion of ITS, and tools/software for analysis of ITS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信