Modified Gipps model: a collision-free car following model

IF 2.8 3区 工程技术 Q3 TRANSPORTATION
Dhwani Shah , Chris Lee , Yong Hoon Kim
{"title":"Modified Gipps model: a collision-free car following model","authors":"Dhwani Shah ,&nbsp;Chris Lee ,&nbsp;Yong Hoon Kim","doi":"10.1080/15472450.2023.2289149","DOIUrl":null,"url":null,"abstract":"<div><div>Car following (CF) models are used in microscopic traffic simulation tools to help assess the effects of a new road design or to assess the effect of change in traffic flow. In 1981, Gipps developed a collision avoidance CF model using the Newtonian laws of motion to describe the motion of each vehicle in a stream of traffic. It is one of the most widely used CF models in both research and practice. Although it is claimed that the Gipps model produces collision-free results, the model produces a collision when the intention of the following vehicle is to brake harder than the perceived deceleration of lead vehicle. For the ease of simulations, a traffic simulation tool is expected to not show unrealistic crashes. This study was carried out to make the Gipps model collision-free in all conditions. It first highlights the conditions where the original Gipps model produces a collision. Then the study derives an equation for a collision-free Gipps CF model. This modified Gipps CF model produces collision-free results that always maintain a safe spacing with the lead vehicle.</div></div>","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"29 1","pages":"Pages 18-31"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S154724502300110X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Car following (CF) models are used in microscopic traffic simulation tools to help assess the effects of a new road design or to assess the effect of change in traffic flow. In 1981, Gipps developed a collision avoidance CF model using the Newtonian laws of motion to describe the motion of each vehicle in a stream of traffic. It is one of the most widely used CF models in both research and practice. Although it is claimed that the Gipps model produces collision-free results, the model produces a collision when the intention of the following vehicle is to brake harder than the perceived deceleration of lead vehicle. For the ease of simulations, a traffic simulation tool is expected to not show unrealistic crashes. This study was carried out to make the Gipps model collision-free in all conditions. It first highlights the conditions where the original Gipps model produces a collision. Then the study derives an equation for a collision-free Gipps CF model. This modified Gipps CF model produces collision-free results that always maintain a safe spacing with the lead vehicle.
改良吉普斯模型:无碰撞汽车跟随模型
微观交通模拟工具中使用的汽车跟随(CF)模型可帮助评估新道路设计的效果或交通流量变化的影响。1981 年,吉普斯开发了汽车跟随模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.80
自引率
19.40%
发文量
51
审稿时长
15 months
期刊介绍: The Journal of Intelligent Transportation Systems is devoted to scholarly research on the development, planning, management, operation and evaluation of intelligent transportation systems. Intelligent transportation systems are innovative solutions that address contemporary transportation problems. They are characterized by information, dynamic feedback and automation that allow people and goods to move efficiently. They encompass the full scope of information technologies used in transportation, including control, computation and communication, as well as the algorithms, databases, models and human interfaces. The emergence of these technologies as a new pathway for transportation is relatively new. The Journal of Intelligent Transportation Systems is especially interested in research that leads to improved planning and operation of the transportation system through the application of new technologies. The journal is particularly interested in research that adds to the scientific understanding of the impacts that intelligent transportation systems can have on accessibility, congestion, pollution, safety, security, noise, and energy and resource consumption. The journal is inter-disciplinary, and accepts work from fields of engineering, economics, planning, policy, business and management, as well as any other disciplines that contribute to the scientific understanding of intelligent transportation systems. The journal is also multi-modal, and accepts work on intelligent transportation for all forms of ground, air and water transportation. Example topics include the role of information systems in transportation, traffic flow and control, vehicle control, routing and scheduling, traveler response to dynamic information, planning for ITS innovations, evaluations of ITS field operational tests, ITS deployment experiences, automated highway systems, vehicle control systems, diffusion of ITS, and tools/software for analysis of ITS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信