Moscow Mathematical Journal最新文献

筛选
英文 中文
The ∗-Markov Equation for Laurent Polynomials Laurent多项式的* -Markov方程
IF 0.8 4区 数学
Moscow Mathematical Journal Pub Date : 2020-06-21 DOI: 10.17323/1609-4514-2022-22-1-1-68
G. Cotti, A. Varchenko
{"title":"The ∗-Markov Equation for Laurent Polynomials","authors":"G. Cotti, A. Varchenko","doi":"10.17323/1609-4514-2022-22-1-1-68","DOIUrl":"https://doi.org/10.17323/1609-4514-2022-22-1-1-68","url":null,"abstract":"We consider the $*$-Markov equation for the symmetric Laurent polynomials in three variables with integer coefficients, which is an equivariant analog of the classical Markov equation for integers. We study how the properties of the Markov equation and its solutions are reflected in the properties of the $*$-Markov equation and its solutions.","PeriodicalId":54736,"journal":{"name":"Moscow Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2020-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47362337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
The Double Difference Property for the Class of Locally Hölder Continuous Functions 局部Hölder连续函数类的二重差分性质
IF 0.8 4区 数学
Moscow Mathematical Journal Pub Date : 2020-06-16 DOI: 10.17323/1609-4514-2022-22-3-393-400
R. Aliev, A. Asgarova, V. Ismailov
{"title":"The Double Difference Property for the Class of Locally Hölder Continuous Functions","authors":"R. Aliev, A. Asgarova, V. Ismailov","doi":"10.17323/1609-4514-2022-22-3-393-400","DOIUrl":"https://doi.org/10.17323/1609-4514-2022-22-3-393-400","url":null,"abstract":"In this paper, we show that the pair of classes of locally Holder continuous functions (considered on $mathbb{R}$ and $mathbb{R}^{2}$, respectively) has the double difference property.","PeriodicalId":54736,"journal":{"name":"Moscow Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2020-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45166379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional Equations of Nekrasov Functions Proposed by Ito, Maruyoshi, and Okuda 伊藤、丸吉和奥田提出的Nekrasov函数的泛函方程
IF 0.8 4区 数学
Moscow Mathematical Journal Pub Date : 2020-05-14 DOI: 10.17323/1609-4514-2020-20-3-531-573
Ryo Ohkawa
{"title":"Functional Equations of Nekrasov Functions Proposed by Ito, Maruyoshi, and Okuda","authors":"Ryo Ohkawa","doi":"10.17323/1609-4514-2020-20-3-531-573","DOIUrl":"https://doi.org/10.17323/1609-4514-2020-20-3-531-573","url":null,"abstract":"","PeriodicalId":54736,"journal":{"name":"Moscow Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2020-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43811976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Generalization of the Fejér–Jackson Inequality and Related Results fej<s:1> -杰克逊不等式的推广及相关结果
IF 0.8 4区 数学
Moscow Mathematical Journal Pub Date : 2020-05-14 DOI: 10.17323/1609-4514-2020-20-3-441-451
H. Alzer, M. Kwong
{"title":"A Generalization of the Fejér–Jackson Inequality and Related Results","authors":"H. Alzer, M. Kwong","doi":"10.17323/1609-4514-2020-20-3-441-451","DOIUrl":"https://doi.org/10.17323/1609-4514-2020-20-3-441-451","url":null,"abstract":"","PeriodicalId":54736,"journal":{"name":"Moscow Mathematical Journal","volume":"20 1","pages":"441-451"},"PeriodicalIF":0.8,"publicationDate":"2020-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43150271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Asymptotic Behaviour of the Sequence of Solutions for a Family of Equations Involving p ( ⋅ ) -Laplace Operators 一类包含p(⋅)-拉普拉斯算子的方程解序列的渐近性
IF 0.8 4区 数学
Moscow Mathematical Journal Pub Date : 2020-05-14 DOI: 10.17323/1609-4514-2020-20-3-495-509
Maria Fărcăşeanu, M. Mihăilescu
{"title":"The Asymptotic Behaviour of the Sequence of Solutions for a Family of Equations Involving p ( ⋅ ) -Laplace Operators","authors":"Maria Fărcăşeanu, M. Mihăilescu","doi":"10.17323/1609-4514-2020-20-3-495-509","DOIUrl":"https://doi.org/10.17323/1609-4514-2020-20-3-495-509","url":null,"abstract":"","PeriodicalId":54736,"journal":{"name":"Moscow Mathematical Journal","volume":"20 1","pages":"495-509"},"PeriodicalIF":0.8,"publicationDate":"2020-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48126966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Characteristic Points, Fundamental Cubic Form and Euler Characteristic of Projective Surfaces 射影曲面的特征点、基本三次形式和欧拉特征
IF 0.8 4区 数学
Moscow Mathematical Journal Pub Date : 2020-05-07 DOI: 10.17323/1609-4514-2020-20-3-511-530
M. Kazarian, R. Uribe-Vargas
{"title":"Characteristic Points, Fundamental Cubic Form and Euler Characteristic of Projective Surfaces","authors":"M. Kazarian, R. Uribe-Vargas","doi":"10.17323/1609-4514-2020-20-3-511-530","DOIUrl":"https://doi.org/10.17323/1609-4514-2020-20-3-511-530","url":null,"abstract":"We define local indices for projective umbilics and godrons (also called cusps of Gauss) on generic smooth surfaces in projective 3-space. By means of these indices, we provide formulas that relate the algebraic numbers of those characteristic points on a surface (and on domains of the surface) with the Euler characteristic of that surface (resp. of those domains). These relations determine the possible coexistences of projective umbilics and godrons on the surface. Our study is based on a \"fundamental cubic form\" for which we provide a closed simple expression.","PeriodicalId":54736,"journal":{"name":"Moscow Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2020-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44297321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Tropical Approximation of Exponential Sums and the Multivariate Fujiwara Bound 指数和的热带逼近与多元Fujiwara界
IF 0.8 4区 数学
Moscow Mathematical Journal Pub Date : 2020-04-30 DOI: 10.17323/1609-4514-2020-2-311-321
Jens Forsgård
{"title":"Tropical Approximation of Exponential Sums and the Multivariate Fujiwara Bound","authors":"Jens Forsgård","doi":"10.17323/1609-4514-2020-2-311-321","DOIUrl":"https://doi.org/10.17323/1609-4514-2020-2-311-321","url":null,"abstract":"","PeriodicalId":54736,"journal":{"name":"Moscow Mathematical Journal","volume":"20 1","pages":"311-321"},"PeriodicalIF":0.8,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48667992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Orbital Chen Theorem for Germs of C∞ Vector Fields with Degenerate Singularity 退化奇异C∞向量场胚的轨道Chen定理
IF 0.8 4区 数学
Moscow Mathematical Journal Pub Date : 2020-04-30 DOI: 10.17323/1609-4514-2020-2-375-404
Jessica Jaurez Rosas, L. Ortiz-Bobadilla
{"title":"Orbital Chen Theorem for Germs of C∞ Vector Fields with Degenerate Singularity","authors":"Jessica Jaurez Rosas, L. Ortiz-Bobadilla","doi":"10.17323/1609-4514-2020-2-375-404","DOIUrl":"https://doi.org/10.17323/1609-4514-2020-2-375-404","url":null,"abstract":"","PeriodicalId":54736,"journal":{"name":"Moscow Mathematical Journal","volume":"20 1","pages":"375-404"},"PeriodicalIF":0.8,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48922302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Symmetries of Tilings of Lorentz Spaces Lorentz空间的平铺相似性
IF 0.8 4区 数学
Moscow Mathematical Journal Pub Date : 2020-04-30 DOI: 10.17323/1609-4514-2020-2-257-276
N. Turki, A. Pratoussevitch
{"title":"Symmetries of Tilings of Lorentz Spaces","authors":"N. Turki, A. Pratoussevitch","doi":"10.17323/1609-4514-2020-2-257-276","DOIUrl":"https://doi.org/10.17323/1609-4514-2020-2-257-276","url":null,"abstract":"","PeriodicalId":54736,"journal":{"name":"Moscow Mathematical Journal","volume":"20 1","pages":"257-276"},"PeriodicalIF":0.8,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45448706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonlocal Elliptic Problems and Applications 非局部椭圆问题及其应用
IF 0.8 4区 数学
Moscow Mathematical Journal Pub Date : 2020-01-28 DOI: 10.17323/1609-4514-2020-20-1-185-210
V. Shakhmurov
{"title":"Nonlocal Elliptic Problems and Applications","authors":"V. Shakhmurov","doi":"10.17323/1609-4514-2020-20-1-185-210","DOIUrl":"https://doi.org/10.17323/1609-4514-2020-20-1-185-210","url":null,"abstract":"","PeriodicalId":54736,"journal":{"name":"Moscow Mathematical Journal","volume":"20 1","pages":"185-210"},"PeriodicalIF":0.8,"publicationDate":"2020-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44806712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信