{"title":"The ∗-Markov Equation for Laurent Polynomials","authors":"G. Cotti, A. Varchenko","doi":"10.17323/1609-4514-2022-22-1-1-68","DOIUrl":"https://doi.org/10.17323/1609-4514-2022-22-1-1-68","url":null,"abstract":"We consider the $*$-Markov equation for the symmetric Laurent polynomials in three variables with integer coefficients, which is an equivariant analog of the classical Markov equation for integers. We study how the properties of the Markov equation and its solutions are reflected in the properties of the $*$-Markov equation and its solutions.","PeriodicalId":54736,"journal":{"name":"Moscow Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2020-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47362337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Double Difference Property for the Class of Locally Hölder Continuous Functions","authors":"R. Aliev, A. Asgarova, V. Ismailov","doi":"10.17323/1609-4514-2022-22-3-393-400","DOIUrl":"https://doi.org/10.17323/1609-4514-2022-22-3-393-400","url":null,"abstract":"In this paper, we show that the pair of classes of locally Holder continuous functions (considered on $mathbb{R}$ and $mathbb{R}^{2}$, respectively) has the double difference property.","PeriodicalId":54736,"journal":{"name":"Moscow Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2020-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45166379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Generalization of the Fejér–Jackson Inequality and Related Results","authors":"H. Alzer, M. Kwong","doi":"10.17323/1609-4514-2020-20-3-441-451","DOIUrl":"https://doi.org/10.17323/1609-4514-2020-20-3-441-451","url":null,"abstract":"","PeriodicalId":54736,"journal":{"name":"Moscow Mathematical Journal","volume":"20 1","pages":"441-451"},"PeriodicalIF":0.8,"publicationDate":"2020-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43150271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Asymptotic Behaviour of the Sequence of Solutions for a Family of Equations Involving p ( ⋅ ) -Laplace Operators","authors":"Maria Fărcăşeanu, M. Mihăilescu","doi":"10.17323/1609-4514-2020-20-3-495-509","DOIUrl":"https://doi.org/10.17323/1609-4514-2020-20-3-495-509","url":null,"abstract":"","PeriodicalId":54736,"journal":{"name":"Moscow Mathematical Journal","volume":"20 1","pages":"495-509"},"PeriodicalIF":0.8,"publicationDate":"2020-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48126966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characteristic Points, Fundamental Cubic Form and Euler Characteristic of Projective Surfaces","authors":"M. Kazarian, R. Uribe-Vargas","doi":"10.17323/1609-4514-2020-20-3-511-530","DOIUrl":"https://doi.org/10.17323/1609-4514-2020-20-3-511-530","url":null,"abstract":"We define local indices for projective umbilics and godrons (also called cusps of Gauss) on generic smooth surfaces in projective 3-space. By means of these indices, we provide formulas that relate the algebraic numbers of those characteristic points on a surface (and on domains of the surface) with the Euler characteristic of that surface (resp. of those domains). These relations determine the possible coexistences of projective umbilics and godrons on the surface. Our study is based on a \"fundamental cubic form\" for which we provide a closed simple expression.","PeriodicalId":54736,"journal":{"name":"Moscow Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2020-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44297321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tropical Approximation of Exponential Sums and the Multivariate Fujiwara Bound","authors":"Jens Forsgård","doi":"10.17323/1609-4514-2020-2-311-321","DOIUrl":"https://doi.org/10.17323/1609-4514-2020-2-311-321","url":null,"abstract":"","PeriodicalId":54736,"journal":{"name":"Moscow Mathematical Journal","volume":"20 1","pages":"311-321"},"PeriodicalIF":0.8,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48667992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Orbital Chen Theorem for Germs of C∞ Vector Fields with Degenerate Singularity","authors":"Jessica Jaurez Rosas, L. Ortiz-Bobadilla","doi":"10.17323/1609-4514-2020-2-375-404","DOIUrl":"https://doi.org/10.17323/1609-4514-2020-2-375-404","url":null,"abstract":"","PeriodicalId":54736,"journal":{"name":"Moscow Mathematical Journal","volume":"20 1","pages":"375-404"},"PeriodicalIF":0.8,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48922302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Symmetries of Tilings of Lorentz Spaces","authors":"N. Turki, A. Pratoussevitch","doi":"10.17323/1609-4514-2020-2-257-276","DOIUrl":"https://doi.org/10.17323/1609-4514-2020-2-257-276","url":null,"abstract":"","PeriodicalId":54736,"journal":{"name":"Moscow Mathematical Journal","volume":"20 1","pages":"257-276"},"PeriodicalIF":0.8,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45448706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}