Laurent多项式的* -Markov方程

G. Cotti, A. Varchenko
{"title":"Laurent多项式的* -Markov方程","authors":"G. Cotti, A. Varchenko","doi":"10.17323/1609-4514-2022-22-1-1-68","DOIUrl":null,"url":null,"abstract":"We consider the $*$-Markov equation for the symmetric Laurent polynomials in three variables with integer coefficients, which is an equivariant analog of the classical Markov equation for integers. We study how the properties of the Markov equation and its solutions are reflected in the properties of the $*$-Markov equation and its solutions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The ∗-Markov Equation for Laurent Polynomials\",\"authors\":\"G. Cotti, A. Varchenko\",\"doi\":\"10.17323/1609-4514-2022-22-1-1-68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the $*$-Markov equation for the symmetric Laurent polynomials in three variables with integer coefficients, which is an equivariant analog of the classical Markov equation for integers. We study how the properties of the Markov equation and its solutions are reflected in the properties of the $*$-Markov equation and its solutions.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.17323/1609-4514-2022-22-1-1-68\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.17323/1609-4514-2022-22-1-1-68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们考虑具有整数系数的三变量对称Laurent多项式的$*$-Markov方程,它是经典整数马尔可夫方程的等变模拟。我们研究了马尔可夫方程及其解的性质如何反映在$*$-马尔可夫方程及其解答的性质中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The ∗-Markov Equation for Laurent Polynomials
We consider the $*$-Markov equation for the symmetric Laurent polynomials in three variables with integer coefficients, which is an equivariant analog of the classical Markov equation for integers. We study how the properties of the Markov equation and its solutions are reflected in the properties of the $*$-Markov equation and its solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信