射影曲面的特征点、基本三次形式和欧拉特征

M. Kazarian, R. Uribe-Vargas
{"title":"射影曲面的特征点、基本三次形式和欧拉特征","authors":"M. Kazarian, R. Uribe-Vargas","doi":"10.17323/1609-4514-2020-20-3-511-530","DOIUrl":null,"url":null,"abstract":"We define local indices for projective umbilics and godrons (also called cusps of Gauss) on generic smooth surfaces in projective 3-space. By means of these indices, we provide formulas that relate the algebraic numbers of those characteristic points on a surface (and on domains of the surface) with the Euler characteristic of that surface (resp. of those domains). These relations determine the possible coexistences of projective umbilics and godrons on the surface. Our study is based on a \"fundamental cubic form\" for which we provide a closed simple expression.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Characteristic Points, Fundamental Cubic Form and Euler Characteristic of Projective Surfaces\",\"authors\":\"M. Kazarian, R. Uribe-Vargas\",\"doi\":\"10.17323/1609-4514-2020-20-3-511-530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define local indices for projective umbilics and godrons (also called cusps of Gauss) on generic smooth surfaces in projective 3-space. By means of these indices, we provide formulas that relate the algebraic numbers of those characteristic points on a surface (and on domains of the surface) with the Euler characteristic of that surface (resp. of those domains). These relations determine the possible coexistences of projective umbilics and godrons on the surface. Our study is based on a \\\"fundamental cubic form\\\" for which we provide a closed simple expression.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.17323/1609-4514-2020-20-3-511-530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.17323/1609-4514-2020-20-3-511-530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们定义了投影3-空间中一般光滑表面上的投影脐和Godron(也称为高斯尖)的局部指数。通过这些指数,我们提供了将曲面上(和曲面的域上)那些特征点的代数数与该曲面的欧拉特征(分别是这些域)联系起来的公式。这些关系决定了投影脐和Godron在曲面上可能共存。我们的研究基于“基本立方形式”,我们为其提供了一个封闭的简单表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Characteristic Points, Fundamental Cubic Form and Euler Characteristic of Projective Surfaces
We define local indices for projective umbilics and godrons (also called cusps of Gauss) on generic smooth surfaces in projective 3-space. By means of these indices, we provide formulas that relate the algebraic numbers of those characteristic points on a surface (and on domains of the surface) with the Euler characteristic of that surface (resp. of those domains). These relations determine the possible coexistences of projective umbilics and godrons on the surface. Our study is based on a "fundamental cubic form" for which we provide a closed simple expression.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信