Moscow Mathematical Journal最新文献

筛选
英文 中文
Ernest Borisovich Vinberg (obituary) 欧内斯特·鲍里索维奇·温伯格(讣告)
IF 0.8 4区 数学
Moscow Mathematical Journal Pub Date : 2021-01-01 DOI: 10.17323/1609-4514-2021-21-2-443-446
I. Arzhantsev, S. Gusein-Zade, Y. Il'yashenko, I. Losev, L. Rybnikov, O. Schwarzman, E. Smirnov, D. A. Timashev, M. Tsfasman
{"title":"Ernest Borisovich Vinberg (obituary)","authors":"I. Arzhantsev, S. Gusein-Zade, Y. Il'yashenko, I. Losev, L. Rybnikov, O. Schwarzman, E. Smirnov, D. A. Timashev, M. Tsfasman","doi":"10.17323/1609-4514-2021-21-2-443-446","DOIUrl":"https://doi.org/10.17323/1609-4514-2021-21-2-443-446","url":null,"abstract":"","PeriodicalId":54736,"journal":{"name":"Moscow Mathematical Journal","volume":"21 1","pages":"443-446"},"PeriodicalIF":0.8,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67826097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Spectrum of a Module along Scheme Morphism and Multi-Operator Functional Calculus 模的模谱与多算子泛函演算
IF 0.8 4区 数学
Moscow Mathematical Journal Pub Date : 2021-01-01 DOI: 10.17323/1609-4514-2021-21-2-287-323
A. Dosi
{"title":"The Spectrum of a Module along Scheme Morphism and Multi-Operator Functional Calculus","authors":"A. Dosi","doi":"10.17323/1609-4514-2021-21-2-287-323","DOIUrl":"https://doi.org/10.17323/1609-4514-2021-21-2-287-323","url":null,"abstract":"","PeriodicalId":54736,"journal":{"name":"Moscow Mathematical Journal","volume":"21 1","pages":"287-323"},"PeriodicalIF":0.8,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67825132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Spectra of Quadratic Vector Fields on C 2 : the Missing Relation c2上二次向量场的谱:缺失关系
IF 0.8 4区 数学
Moscow Mathematical Journal Pub Date : 2021-01-01 DOI: 10.17323/1609-4514-2021-21-2-365-382
Yury Kudryashov, Valente Ramírez
{"title":"Spectra of Quadratic Vector Fields on C 2 : the Missing Relation","authors":"Yury Kudryashov, Valente Ramírez","doi":"10.17323/1609-4514-2021-21-2-365-382","DOIUrl":"https://doi.org/10.17323/1609-4514-2021-21-2-365-382","url":null,"abstract":"","PeriodicalId":54736,"journal":{"name":"Moscow Mathematical Journal","volume":"21 1","pages":"365-382"},"PeriodicalIF":0.8,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67825986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Hodge Numbers of Generalized Kummer Schemes via Relative Power Structures 基于相对权力结构的广义Kummer格式的Hodge数
IF 0.8 4区 数学
Moscow Mathematical Journal Pub Date : 2021-01-01 DOI: 10.17323/1609-4514-2021-21-4-807-830
Andrew Morrison, Junliang Shen
{"title":"Hodge Numbers of Generalized Kummer Schemes via Relative Power Structures","authors":"Andrew Morrison, Junliang Shen","doi":"10.17323/1609-4514-2021-21-4-807-830","DOIUrl":"https://doi.org/10.17323/1609-4514-2021-21-4-807-830","url":null,"abstract":"","PeriodicalId":54736,"journal":{"name":"Moscow Mathematical Journal","volume":"1 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67826877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
On the a -Points of Symmetric Sum of Multiple Zeta Function 关于多重Zeta函数对称和的a点
IF 0.8 4区 数学
Moscow Mathematical Journal Pub Date : 2020-12-10 DOI: 10.17323/1609-4514-2022-22-4-741-757
H. Murahara, Tomokazu Onozuka
{"title":"On the a -Points of Symmetric Sum of Multiple Zeta Function","authors":"H. Murahara, Tomokazu Onozuka","doi":"10.17323/1609-4514-2022-22-4-741-757","DOIUrl":"https://doi.org/10.17323/1609-4514-2022-22-4-741-757","url":null,"abstract":"In this paper, we present some results on the $a$-points of the symmetric sum of the Euler-Zagier multiple zeta function. Our first three results are for the $a$-points free region of the function. The fourth result is the Riemann-von Mangoldt type formula. In the last two results, we study the real parts of $a$-points of the function.","PeriodicalId":54736,"journal":{"name":"Moscow Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44573273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lie Elements and the Matrix-Tree Theorem 李元与矩阵树定理
IF 0.8 4区 数学
Moscow Mathematical Journal Pub Date : 2020-11-20 DOI: 10.17323/1609-4514-2023-23-1-47-58
Yurii Burman, V. Kulishov
{"title":"Lie Elements and the Matrix-Tree Theorem","authors":"Yurii Burman, V. Kulishov","doi":"10.17323/1609-4514-2023-23-1-47-58","DOIUrl":"https://doi.org/10.17323/1609-4514-2023-23-1-47-58","url":null,"abstract":"For a finite-dimensional representation V of a group G we introduce and study the notion of a Lie element in the group algebra k[G]. The set L(V) subset k[G] of Lie elements is a Lie algebra and a G-module acting on the original representation V. \u0000Lie elements often exhibit nice combinatorial properties. Thus, for G = S_n and V, a permutation representation, we prove a formula for the characteristic polynomial of a Lie element similar to the classical matrix-tree theorem.","PeriodicalId":54736,"journal":{"name":"Moscow Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44218464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Crofton Formulae for Products Crofton产品配方
IF 0.8 4区 数学
Moscow Mathematical Journal Pub Date : 2020-11-09 DOI: 10.17323/1609-4514-2022-22-3-377-392
D. Akhiezer, B. Kazarnovskii
{"title":"Crofton Formulae for Products","authors":"D. Akhiezer, B. Kazarnovskii","doi":"10.17323/1609-4514-2022-22-3-377-392","DOIUrl":"https://doi.org/10.17323/1609-4514-2022-22-3-377-392","url":null,"abstract":"It is shown how new integral-geometric formulae can be obtained from the existing formulae of Crofton type. In particular, for classical Crofton formulae in which the answer depends on the Riemannian volume, we obtain generalizations in terms of the mixed Riemannian volume defined in the paper. The method is based on the calculations in the ring of normal densities constructed in the previous work of the authors.","PeriodicalId":54736,"journal":{"name":"Moscow Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2020-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47997792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Néron–Severi Lie Algebra, Autoequivalences of the Derived Category, and Monodromy Néron–Severi李代数、导出范畴的自等价性和单调性
IF 0.8 4区 数学
Moscow Mathematical Journal Pub Date : 2020-09-19 DOI: 10.17323/1609-4514-2022-22-4-705-739
V. Lunts
{"title":"Néron–Severi Lie Algebra, Autoequivalences of the Derived Category, and Monodromy","authors":"V. Lunts","doi":"10.17323/1609-4514-2022-22-4-705-739","DOIUrl":"https://doi.org/10.17323/1609-4514-2022-22-4-705-739","url":null,"abstract":"This preprint supersedes the previous version, which was only about Kontsevich's conjecture on the relation between the monodromy of a family of (weakly) CY varieties and the action on cohomology of the group of autoequivalences of the derived category of varieties in the mirror dual family. Here we add another conjecture about the relation of the group of autoequivalence of the derived category of a CY variety and its Neron-Severi Lie algebra.","PeriodicalId":54736,"journal":{"name":"Moscow Mathematical Journal","volume":"1 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2020-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41987982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toric Topology of the Grassmannian of Planes in C 5 and the Del Pezzo Surface of Degree 5 C5中平面Grassmann的Toric拓扑与5次Del-Pezzo曲面
IF 0.8 4区 数学
Moscow Mathematical Journal Pub Date : 2020-08-17 DOI: 10.17323/1609-4514-2021-21-3-639-652
Hendrik Süß
{"title":"Toric Topology of the Grassmannian of Planes in C 5 and the Del Pezzo Surface of Degree 5","authors":"Hendrik Süß","doi":"10.17323/1609-4514-2021-21-3-639-652","DOIUrl":"https://doi.org/10.17323/1609-4514-2021-21-3-639-652","url":null,"abstract":"","PeriodicalId":54736,"journal":{"name":"Moscow Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46084513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Homology Group Automorphisms of Riemann Surfaces Riemann曲面的同调群自同构
IF 0.8 4区 数学
Moscow Mathematical Journal Pub Date : 2020-07-03 DOI: 10.17323/1609-4514-2023-23-1-113-120
R. Hidalgo
{"title":"Homology Group Automorphisms of Riemann Surfaces","authors":"R. Hidalgo","doi":"10.17323/1609-4514-2023-23-1-113-120","DOIUrl":"https://doi.org/10.17323/1609-4514-2023-23-1-113-120","url":null,"abstract":"If $Gamma$ is a finitely generated Fuchsian group such that its derived subgroup $Gamma'$ is co-compact and torsion free, then $S={mathbb H}^{2}/Gamma'$ is a closed Riemann surface of genus $g geq 2$ admitting the abelian group $A=Gamma/Gamma'$ as a group of conformal automorphisms. We say that $A$ is a homology group of $S$. A natural question is if $S$ admits unique homology groups or not, in other words, is there are different Fuchsian groups $Gamma_{1}$ and $Gamma_{2}$ with $Gamma_{1}'=Gamma'_{2}$? It is known that if $Gamma_{1}$ and $Gamma_{2}$ are both of the same signature $(0;k,ldots,k)$, for some $k geq 2$, then the equality $Gamma_{1}'=Gamma_{2}'$ ensures that $Gamma_{1}=Gamma_{2}$. Generalizing this, we observe that if $Gamma_{j}$ has signature $(0;k_{j},ldots,k_{j})$ and $Gamma_{1}'=Gamma'_{2}$, then $Gamma_{1}=Gamma_{2}$. We also provide examples of surfaces $S$ with different homology groups. A description of the normalizer in ${rm Aut}(S)$ of each homology group $A$ is also obtained.","PeriodicalId":54736,"journal":{"name":"Moscow Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2020-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47771051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信