{"title":"CS-UNet: Cross-scale U-Net with Semantic-position dependencies for retinal vessel segmentation.","authors":"Ying Yang, Shengbin Yue, Haiyan Quan","doi":"10.1080/0954898X.2023.2288858","DOIUrl":"10.1080/0954898X.2023.2288858","url":null,"abstract":"<p><p>Accurate retinal vessel segmentation is the prerequisite for early recognition and treatment of retina-related diseases. However, segmenting retinal vessels is still challenging due to the intricate vessel tree in fundus images, which has a significant number of tiny vessels, low contrast, and lesion interference. For this task, the u-shaped architecture (U-Net) has become the de-facto standard and has achieved considerable success. However, U-Net is a pure convolutional network, which usually shows limitations in global modelling. In this paper, we propose a novel Cross-scale U-Net with Semantic-position Dependencies (CS-UNet) for retinal vessel segmentation. In particular, we first designed a Semantic-position Dependencies Aggregator (SPDA) and incorporate it into each layer of the encoder to better focus on global contextual information by integrating the relationship of semantic and position. To endow the model with the capability of cross-scale interaction, the Cross-scale Relation Refine Module (CSRR) is designed to dynamically select the information associated with the vessels, which helps guide the up-sampling operation. Finally, we have evaluated CS-UNet on three public datasets: DRIVE, CHASE_DB1, and STARE. Compared to most existing state-of-the-art methods, CS-UNet demonstrated better performance.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"134-153"},"PeriodicalIF":7.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138489124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A robust genetic algorithm-based optimal feature predictor model for brain tumour classification from MRI data","authors":"Meenal Thayumanavan, Asokan Ramasamy","doi":"10.1080/0954898x.2024.2343340","DOIUrl":"https://doi.org/10.1080/0954898x.2024.2343340","url":null,"abstract":"Brain tumour can be cured if it is initially screened and given timely treatment to the patients. This proposed idea suggests a transform- and windowing-based optimization strategy for exposing and...","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":"23 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140634771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An innovative breast cancer detection framework using multiscale dilated densenet with attention mechanism","authors":"Subhashini Ramachandran, Rajasekar Velusamy, Namakkal Venkataraman Srinivasan Sree Rathna Lakshmi, Chakaravarthi Sivanandam","doi":"10.1080/0954898x.2024.2343348","DOIUrl":"https://doi.org/10.1080/0954898x.2024.2343348","url":null,"abstract":"Cancer-related deadly diseases affect both developed and underdeveloped nations worldwide. Effective network learning is crucial to more reliably identify and categorize breast carcinoma in vast an...","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":"6 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140634658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Topological information embedded convolutional neural network-based lotus effect optimization for path improvisation of the mobile anchors in wireless sensor networks","authors":"Bala Subramanian Chokkalingam, Balakannan Sirumulasi Paramasivan, Maragatharajan Muthusamy","doi":"10.1080/0954898x.2024.2339477","DOIUrl":"https://doi.org/10.1080/0954898x.2024.2339477","url":null,"abstract":"Wireless sensor networks (WSNs) rely on mobile anchor nodes (MANs) for network connectivity, data aggregation, and location information. However, MANs’ mobility can disrupt energy consumption and n...","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":"99 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140634773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chukwuebuka Joseph Ejiyi, Zhen Qin, Grace Ugochi Nneji, Happy Nkanta Monday, Victor K. Agbesi, Makuachukwu Bennedith Ejiyi, Thomas Ugochukwu Ejiyi, Olusola O. Bamisile
{"title":"Enhanced Cardiovascular Disease Prediction Modelling using Machine Learning Techniques: A Focus on CardioVitalnet","authors":"Chukwuebuka Joseph Ejiyi, Zhen Qin, Grace Ugochi Nneji, Happy Nkanta Monday, Victor K. Agbesi, Makuachukwu Bennedith Ejiyi, Thomas Ugochukwu Ejiyi, Olusola O. Bamisile","doi":"10.1080/0954898x.2024.2343341","DOIUrl":"https://doi.org/10.1080/0954898x.2024.2343341","url":null,"abstract":"Aiming at early detection and accurate prediction of cardiovascular disease (CVD) to reduce mortality rates, this study focuses on the development of an intelligent predictive system to identify in...","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":"12 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140611169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamic resource allocation in 5G networks using hybrid RL-CNN model for optimized latency and quality of service","authors":"Muthulakshmi Karuppiyan, Hariharan Subramani, Shanthy Kandasamy Raju, Manimekalai Maradi Anthonymuthu Prakasam","doi":"10.1080/0954898x.2024.2334282","DOIUrl":"https://doi.org/10.1080/0954898x.2024.2334282","url":null,"abstract":"The rapid deployment of 5G networks necessitates innovative solutions for efficient and dynamic resource allocation. Current strategies, although effective to some extent, lack real-time adaptabili...","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":"37 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140573973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chukwuebuka Joseph Ejiyi, Zhen Qin, Chiagoziem Chima Ukwuoma, Grace Ugochi Nneji, Happy Nkanta Monday, Makuachukwu Bennedith Ejiyi, Thomas Ugochukwu Ejiyi, Uchenna Okechukwu, Olusola O Bamisile
{"title":"Comparative performance analysis of Boruta, SHAP, and Borutashap for disease diagnosis: A study with multiple machine learning algorithms.","authors":"Chukwuebuka Joseph Ejiyi, Zhen Qin, Chiagoziem Chima Ukwuoma, Grace Ugochi Nneji, Happy Nkanta Monday, Makuachukwu Bennedith Ejiyi, Thomas Ugochukwu Ejiyi, Uchenna Okechukwu, Olusola O Bamisile","doi":"10.1080/0954898X.2024.2331506","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2331506","url":null,"abstract":"<p><p>Interpretable machine learning models are instrumental in disease diagnosis and clinical decision-making, shedding light on relevant features. Notably, Boruta, SHAP (SHapley Additive exPlanations), and BorutaShap were employed for feature selection, each contributing to the identification of crucial features. These selected features were then utilized to train six machine learning algorithms, including LR, SVM, ETC, AdaBoost, RF, and LR, using diverse medical datasets obtained from public sources after rigorous preprocessing. The performance of each feature selection technique was evaluated across multiple ML models, assessing accuracy, precision, recall, and F1-score metrics. Among these, SHAP showcased superior performance, achieving average accuracies of 80.17%, 85.13%, 90.00%, and 99.55% across diabetes, cardiovascular, statlog, and thyroid disease datasets, respectively. Notably, the LGBM emerged as the most effective algorithm, boasting an average accuracy of 91.00% for most disease states. Moreover, SHAP enhanced the interpretability of the models, providing valuable insights into the underlying mechanisms driving disease diagnosis. This comprehensive study contributes significant insights into feature selection techniques and machine learning algorithms for disease diagnosis, benefiting researchers and practitioners in the medical field. Further exploration of feature selection methods and algorithms holds promise for advancing disease diagnosis methodologies, paving the way for more accurate and interpretable diagnostic models.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-38"},"PeriodicalIF":7.8,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140177791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E V R M Kalaimani Shanmugham, Saravanan Dhatchnamurthy, Prabbu Sankar Pakkiri, Neha Garg
{"title":"Adaptive activation Functions with Deep Kronecker Neural Network optimized with Bear Smell Search Algorithm for preventing MANET Cyber security attacks.","authors":"E V R M Kalaimani Shanmugham, Saravanan Dhatchnamurthy, Prabbu Sankar Pakkiri, Neha Garg","doi":"10.1080/0954898X.2024.2321391","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2321391","url":null,"abstract":"<p><p>An Adaptive activation Functions with Deep Kronecker Neural Network optimized with Bear Smell Search Algorithm (BSSA) (ADKNN-BSSA-CSMANET) is proposed for preventing MANET Cyber security attacks. The mobile users are enrolled with Trusted Authority Using a Crypto Hash Signature (SHA-256). Every mobile user uploads their finger vein biometric, user ID, latitude and longitude for confirmation. The packet analyser checks if any attack patterns are identified. It is implemented using adaptive density-based spatial clustering (ADSC) that deems information from packet header. Geodesic filtering (GF) is used as a pre-processing method for eradicating the unsolicited content and filtering pertinent data. Group Teaching Algorithm (GTA)-based feature selection is utilized for ideal collection of features and Adaptive Activation Functions along Deep Kronecker Neural Network (ADKNN) is used to categorizing normal and attack packets (DoS, Probe, U2R, and R2L). Then BSSA is utilized for optimizing the weight parameters of ADKNN classifier for optimal classification. The proposed technique is executed in python and its efficiency is evaluated by several performances metrics, such as Accuracy, Attack Detection Rate, Detection Delay, Packet Delivery Ratio, Throughput, and Energy Consumption. The proposed technique provides 36.64%, 33.06%, and 33.98% lower Detection Delay on NSL-KDD dataset compared with the existing methods.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-25"},"PeriodicalIF":7.8,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140121421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Q-learning and fuzzy logic multi-tier multi-access edge clustering for 5g v2x communication.","authors":"Sangeetha Alagumani, Uma Maheswari Natarajan","doi":"10.1080/0954898X.2024.2309947","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2309947","url":null,"abstract":"<p><p>The 5th generation (5 G) network is required to meet the growing demand for fast data speeds and the expanding number of customers. Apart from offering higher speeds, 5 G will be employed in other industries such as the Internet of Things, broadcast services, and so on. Energy efficiency, scalability, resiliency, interoperability, and high data rate/low delay are the primary requirements and obstacles of 5 G cellular networks. Due to IEEE 802.11p's constraints, such as limited coverage, inability to handle dense vehicle networks, signal congestion, and connectivity outages, efficient data distribution is a big challenge (MAC contention problem). In this research, vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I) and vehicle-to-pedestrian (V2P) services are used to overcome bandwidth constraints in very dense network communications from cellular tool to everything (C-V2X). Clustering is done through multi-layered multi-access edge clustering, which helps reduce vehicle contention. Fuzzy logic and Q-learning and intelligence are used for a multi-hop route selection system. The proposed protocol adjusts the number of cluster-head nodes using a Q-learning algorithm, allowing it to quickly adapt to a range of scenarios with varying bandwidths and vehicle densities.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-24"},"PeriodicalIF":7.8,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140040908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}