用于识别和缓解 SD-IoT 中 DDoS 攻击的优化深度策略。

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Kalpana Kumbhar, Prachi Mukherji
{"title":"用于识别和缓解 SD-IoT 中 DDoS 攻击的优化深度策略。","authors":"Kalpana Kumbhar, Prachi Mukherji","doi":"10.1080/0954898X.2024.2356852","DOIUrl":null,"url":null,"abstract":"<p><p>The attacks like distributed denial-of-service (DDoS) are termed as severe defence issues in data centres, and are considered real network threat. These types of attacks can produce huge disturbances in information technologies. In addition, it is a complex task to determine and fully alleviate DDoS attacks. The new strategy is developed to identify and alleviate DDoS attacks in the Software-Defined Internet of Things (SD-IoT) model. SD-IoT simulation is executed to gather data. The data collected through nodes of SD-IoT are fed to the selection of feature phases. Here, the hybrid process is considered to select features, wherein features, like wrapper-based technique, cosine similarity-based technique, and entropy-based technique are utilized to choose the significant features. Thereafter, the attack discovery process is done with Elephant Water Cycle (EWC)-assisted deep neuro-fuzzy network (DNFN). The EWC is adapted to train DNFN, and here EWC is obtained by grouping Elephant Herd Optimization (EHO) and water cycle algorithm (WCA). Finally, attack mitigation is carried out to secure the SD-IoT. The EWC-assisted DNFN revealed the highest accuracy of 96.9%, TNR of 98%, TPR of 90%, precision of 93%, and F1-score of 91%, when compared with other related techniques.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-32"},"PeriodicalIF":1.1000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An optimized deep strategy for recognition and alleviation of DDoS attack in SD-IoT.\",\"authors\":\"Kalpana Kumbhar, Prachi Mukherji\",\"doi\":\"10.1080/0954898X.2024.2356852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The attacks like distributed denial-of-service (DDoS) are termed as severe defence issues in data centres, and are considered real network threat. These types of attacks can produce huge disturbances in information technologies. In addition, it is a complex task to determine and fully alleviate DDoS attacks. The new strategy is developed to identify and alleviate DDoS attacks in the Software-Defined Internet of Things (SD-IoT) model. SD-IoT simulation is executed to gather data. The data collected through nodes of SD-IoT are fed to the selection of feature phases. Here, the hybrid process is considered to select features, wherein features, like wrapper-based technique, cosine similarity-based technique, and entropy-based technique are utilized to choose the significant features. Thereafter, the attack discovery process is done with Elephant Water Cycle (EWC)-assisted deep neuro-fuzzy network (DNFN). The EWC is adapted to train DNFN, and here EWC is obtained by grouping Elephant Herd Optimization (EHO) and water cycle algorithm (WCA). Finally, attack mitigation is carried out to secure the SD-IoT. The EWC-assisted DNFN revealed the highest accuracy of 96.9%, TNR of 98%, TPR of 90%, precision of 93%, and F1-score of 91%, when compared with other related techniques.</p>\",\"PeriodicalId\":54735,\"journal\":{\"name\":\"Network-Computation in Neural Systems\",\"volume\":\" \",\"pages\":\"1-32\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network-Computation in Neural Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/0954898X.2024.2356852\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2356852","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

分布式拒绝服务(DDoS)等攻击被称为数据中心的严重防御问题,是真正的网络威胁。这类攻击会对信息技术造成巨大干扰。此外,确定和完全缓解 DDoS 攻击是一项复杂的任务。我们开发了一种新策略来识别和缓解软件定义物联网(SD-IoT)模型中的 DDoS 攻击。执行 SD-IoT 模拟以收集数据。通过 SD-IoT 节点收集到的数据被输入到特征选择阶段。在此,考虑采用混合流程来选择特征,利用基于包装的技术、基于余弦相似性的技术和基于熵的技术等特征来选择重要特征。之后,利用大象水循环(EWC)辅助深度神经模糊网络(DNFN)完成攻击发现过程。EWC 适用于训练 DNFN,这里的 EWC 是通过象群优化(EHO)和水循环算法(WCA)分组获得的。最后,为确保 SD-IoT 的安全,进行了攻击缓解。与其他相关技术相比,EWC 辅助 DNFN 的准确率最高,达到 96.9%,TNR 为 98%,TPR 为 90%,精度为 93%,F1-score 为 91%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An optimized deep strategy for recognition and alleviation of DDoS attack in SD-IoT.

The attacks like distributed denial-of-service (DDoS) are termed as severe defence issues in data centres, and are considered real network threat. These types of attacks can produce huge disturbances in information technologies. In addition, it is a complex task to determine and fully alleviate DDoS attacks. The new strategy is developed to identify and alleviate DDoS attacks in the Software-Defined Internet of Things (SD-IoT) model. SD-IoT simulation is executed to gather data. The data collected through nodes of SD-IoT are fed to the selection of feature phases. Here, the hybrid process is considered to select features, wherein features, like wrapper-based technique, cosine similarity-based technique, and entropy-based technique are utilized to choose the significant features. Thereafter, the attack discovery process is done with Elephant Water Cycle (EWC)-assisted deep neuro-fuzzy network (DNFN). The EWC is adapted to train DNFN, and here EWC is obtained by grouping Elephant Herd Optimization (EHO) and water cycle algorithm (WCA). Finally, attack mitigation is carried out to secure the SD-IoT. The EWC-assisted DNFN revealed the highest accuracy of 96.9%, TNR of 98%, TPR of 90%, precision of 93%, and F1-score of 91%, when compared with other related techniques.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信