Dual-input robust diagnostics for railway point machines via audio signals.

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Tao Wen, Jinke Li, Rong Fei, Xinhong Hei, Zhiming Chen, Zhurong Wang
{"title":"Dual-input robust diagnostics for railway point machines via audio signals.","authors":"Tao Wen, Jinke Li, Rong Fei, Xinhong Hei, Zhiming Chen, Zhurong Wang","doi":"10.1080/0954898X.2024.2358955","DOIUrl":null,"url":null,"abstract":"<p><p>Railway Point Machine (RPM) is a fundamental component of railway infrastructure and plays a crucial role in ensuring the safe operation of trains. Its primary function is to divert trains from one track to another, enabling connections between different lines and facilitating route selection. By judiciously deploying turnouts, railway systems can provide efficient transportation services while ensuring the safety of passengers and cargo. As signal processing technologies develop rapidly, taking the easy acquisition advantages of audio signals, a fault diagnosis method for RPMs is proposed by considering noise and multi-channel signals. The proposed method consists of several stages. Initially, the signal is subjected to pre-processing steps, including cropping and channel separation. Subsequently, the signal undergoes noise addition using the Random Length and Dynamic Position Noises Superposition (RDS) module, followed by conversion to a greyscale image. To enhance the data, Synthetic Minority Oversampling Technique (SMOTE) module is applied. Finally, the training data is fed into a Dual-input Attention Convolutional Neural Network (DIACNN). By employing various experimental techniques and designing diverse datasets, our proposed method demonstrates excellent robustness and achieves an outstanding classification accuracy of 99.73%.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-22"},"PeriodicalIF":1.1000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2358955","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Railway Point Machine (RPM) is a fundamental component of railway infrastructure and plays a crucial role in ensuring the safe operation of trains. Its primary function is to divert trains from one track to another, enabling connections between different lines and facilitating route selection. By judiciously deploying turnouts, railway systems can provide efficient transportation services while ensuring the safety of passengers and cargo. As signal processing technologies develop rapidly, taking the easy acquisition advantages of audio signals, a fault diagnosis method for RPMs is proposed by considering noise and multi-channel signals. The proposed method consists of several stages. Initially, the signal is subjected to pre-processing steps, including cropping and channel separation. Subsequently, the signal undergoes noise addition using the Random Length and Dynamic Position Noises Superposition (RDS) module, followed by conversion to a greyscale image. To enhance the data, Synthetic Minority Oversampling Technique (SMOTE) module is applied. Finally, the training data is fed into a Dual-input Attention Convolutional Neural Network (DIACNN). By employing various experimental techniques and designing diverse datasets, our proposed method demonstrates excellent robustness and achieves an outstanding classification accuracy of 99.73%.

通过音频信号为铁路点检机提供双输入稳健诊断。
铁路点检机(RPM)是铁路基础设施的基本组成部分,在确保列车安全运行方面发挥着至关重要的作用。它的主要功能是将列车从一条轨道分流到另一条轨道,实现不同线路之间的连接,方便线路选择。通过合理部署道岔,铁路系统可以提供高效的运输服务,同时确保乘客和货物的安全。随着信号处理技术的飞速发展,利用音频信号易于采集的优势,提出了一种考虑噪声和多通道信号的转辙机故障诊断方法。所提出的方法包括几个阶段。首先,对信号进行预处理,包括裁剪和信道分离。随后,使用随机长度和动态位置噪声叠加(RDS)模块对信号进行噪声添加,然后转换为灰度图像。为了增强数据,应用了合成少数群体过度采样技术(SMOTE)模块。最后,将训练数据输入双输入注意卷积神经网络(DIACNN)。通过采用各种实验技术和设计不同的数据集,我们提出的方法表现出卓越的鲁棒性,分类准确率高达 99.73%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信