EfficientNet-deep quantum neural network-based economic denial of sustainability attack detection to enhance network security in cloud.

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Mariappan Navaneethakrishnan, Maharajan Robinson Joel, Sriram Kalavai Palani, Gandhi Jabakumar Gnanaprakasam
{"title":"EfficientNet-deep quantum neural network-based economic denial of sustainability attack detection to enhance network security in cloud.","authors":"Mariappan Navaneethakrishnan, Maharajan Robinson Joel, Sriram Kalavai Palani, Gandhi Jabakumar Gnanaprakasam","doi":"10.1080/0954898X.2024.2361093","DOIUrl":null,"url":null,"abstract":"<p><p>Cloud computing (CC) is a future revolution in the Information technology (IT) and Communication field. Security and internet connectivity are the common major factors to slow down the proliferation of CC. Recently, a new kind of denial of service (DDoS) attacks, known as Economic Denial of Sustainability (EDoS) attack, has been emerging. Though EDoS attacks are smaller at a moment, it can be expected to develop in nearer prospective in tandem with progression in the cloud usage. Here, EfficientNet-B3-Attn-2 fused Deep Quantum Neural Network (EfficientNet-DQNN) is presented for EDoS detection. Initially, cloud is simulated and thereafter, considered input log file is fed to perform data pre-processing. Z-Score Normalization ;(ZSN) is employed to carry out pre-processing of data. Afterwards, feature fusion (FF) is accomplished based on Deep Neural Network (DNN) with Kulczynski similarity. Then, data augmentation (DA) is executed by oversampling based upon Synthetic Minority Over-sampling Technique (SMOTE). At last, attack detection is conducted utilizing EfficientNet-DQNN. Furthermore, EfficientNet-DQNN is formed by incorporation of EfficientNet-B3-Attn-2 with DQNN. In addition, EfficientNet-DQNN attained 89.8% of F1-score, 90.4% of accuracy, 91.1% of precision and 91.2% of recall using BOT-IOT dataset at K-Fold is 9.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-25"},"PeriodicalIF":1.1000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2361093","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Cloud computing (CC) is a future revolution in the Information technology (IT) and Communication field. Security and internet connectivity are the common major factors to slow down the proliferation of CC. Recently, a new kind of denial of service (DDoS) attacks, known as Economic Denial of Sustainability (EDoS) attack, has been emerging. Though EDoS attacks are smaller at a moment, it can be expected to develop in nearer prospective in tandem with progression in the cloud usage. Here, EfficientNet-B3-Attn-2 fused Deep Quantum Neural Network (EfficientNet-DQNN) is presented for EDoS detection. Initially, cloud is simulated and thereafter, considered input log file is fed to perform data pre-processing. Z-Score Normalization ;(ZSN) is employed to carry out pre-processing of data. Afterwards, feature fusion (FF) is accomplished based on Deep Neural Network (DNN) with Kulczynski similarity. Then, data augmentation (DA) is executed by oversampling based upon Synthetic Minority Over-sampling Technique (SMOTE). At last, attack detection is conducted utilizing EfficientNet-DQNN. Furthermore, EfficientNet-DQNN is formed by incorporation of EfficientNet-B3-Attn-2 with DQNN. In addition, EfficientNet-DQNN attained 89.8% of F1-score, 90.4% of accuracy, 91.1% of precision and 91.2% of recall using BOT-IOT dataset at K-Fold is 9.

基于 EfficientNet 深度量子神经网络的经济拒绝可持续性攻击检测,以增强云中的网络安全。
云计算(CC)是信息技术(IT)和通信领域未来的一场革命。安全和互联网连接是阻碍云计算普及的主要因素。最近,出现了一种新型的拒绝服务(DDoS)攻击,即经济拒绝可持续发展(EDoS)攻击。虽然目前 EDoS 攻击的规模较小,但随着云计算应用的不断发展,预计在不久的将来这种攻击也会发展起来。在此,介绍了用于 EDoS 检测的 EfficientNet-B3-Attn-2 融合深度量子神经网络(EfficientNet-DQNN)。首先,对云进行模拟,然后输入输入日志文件进行数据预处理。Z-Score Normalization ;(ZSN) 被用来进行数据预处理。然后,基于库尔钦斯基相似性的深度神经网络(DNN)完成特征融合(FF)。然后,通过基于合成少数群体过度采样技术(SMOTE)的过度采样来执行数据增强(DA)。最后,利用 EfficientNet-DQNN 进行攻击检测。此外,EfficientNet-DQNN 由 EfficientNet-B3-Attn-2 和 DQNN 组成。此外,EfficientNet-DQNN 在使用 BOT-IOT 数据集(K-Fold 为 9)时获得了 89.8% 的 F1 分数、90.4% 的准确率、91.1% 的精确率和 91.2% 的召回率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信