Optical Switching and Networking最新文献

筛选
英文 中文
Why Optical Packet Switching failed and can Elastic Optical Networks take its place? 光分组交换失败的原因和弹性光网络可以代替它吗?
IF 2.2 4区 计算机科学
Optical Switching and Networking Pub Date : 2022-05-01 DOI: 10.1016/j.osn.2021.100664
Franco Callegati , Davide Careglio , Luiz Henrique Bonani , Mario Pickavet , Josep Solé-Pareta
{"title":"Why Optical Packet Switching failed and can Elastic Optical Networks take its place?","authors":"Franco Callegati ,&nbsp;Davide Careglio ,&nbsp;Luiz Henrique Bonani ,&nbsp;Mario Pickavet ,&nbsp;Josep Solé-Pareta","doi":"10.1016/j.osn.2021.100664","DOIUrl":"10.1016/j.osn.2021.100664","url":null,"abstract":"<div><p>In this special issue devoted to the memory of Prof. Fabio Neri we would like to look back at the time of the international research projects where some of us collaborated with him. On the basis of our personal experience of the time and the current viewpoint, we will discuss why Optical Packet Switching (OPS) is a technology that never came to market in spite of the great amount of research that was devoted to it. Then we will explore how Elastic Optical Network came to the stage more recently, somewhat overcoming the OPS technical proposal both in the interest of the researchers as well as of the industry.</p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"44 ","pages":"Article 100664"},"PeriodicalIF":2.2,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127678683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Optical networks management and control: A review and recent challenges 光网络管理与控制:回顾与最新挑战
IF 2.2 4区 计算机科学
Optical Switching and Networking Pub Date : 2022-05-01 DOI: 10.1016/j.osn.2021.100652
Nicola Andriolli , Alessio Giorgetti , Piero Castoldi , Gabriele Cecchetti , Isabella Cerutti , Nicola Sambo , Andrea Sgambelluri , Luca Valcarenghi , Filippo Cugini , Barbara Martini , Francesco Paolucci
{"title":"Optical networks management and control: A review and recent challenges","authors":"Nicola Andriolli ,&nbsp;Alessio Giorgetti ,&nbsp;Piero Castoldi ,&nbsp;Gabriele Cecchetti ,&nbsp;Isabella Cerutti ,&nbsp;Nicola Sambo ,&nbsp;Andrea Sgambelluri ,&nbsp;Luca Valcarenghi ,&nbsp;Filippo Cugini ,&nbsp;Barbara Martini ,&nbsp;Francesco Paolucci","doi":"10.1016/j.osn.2021.100652","DOIUrl":"10.1016/j.osn.2021.100652","url":null,"abstract":"<div><p><span>In the last twenty years, optical networks have witnessed </span>recurrent<span> changes in their management and control architecture. In this paper, we present a historical timeline and a future perspective of the evolution of optical network management and control deployed for Wavelength Switched Optical Networks (WSON), Elastic Optical Networks (EON) and (multilayer) Data Center Networks.</span></p><p><span><span>Early implementations of WSON envisaged a static and centralized provisioning approach supported by the Management Plane only. Gradually, the requirement of accommodating more network dynamicity in WSON, and later in EON, pushed the adoption of a distributed control, mostly supported by vendor-dependent implementations of the Generalized MultiProtocol Label Switching (GMPLS) protocol suite. The drawbacks of the fully distributed GMPLS-based control, such as resource contention, suboptimal resource usage, and complex computations (e.g., to account for </span>physical layer constraints) showed the necessity to bring back some of the routing/provisioning functions to a centralized Path Computation Element (PCE) capable of accounting for e.g. </span>physical impairments and interworking with GMPLS.</p><p>The centralized control then gained its momentum and brought a radical change in network control, through the separation of data and control plane introduced by the paradigm of Software Defined Networking (SDN). Such an approach has been gradually extended to optical network control.</p><p><span>The paper, eventually, presents the most advanced control techniques, namely the intent-based networking, the observe/decide/act state-based approach providing for autonomic<span> optical network and the (closed-loop) zero-touch service management approach. Advanced traffic conditioning techniques are also detailed, namely the in-band telemetry and the exploitation of Programming Protocol-Independent Packet Processors (P4) language capabilities as well as solutions tailored for data center networks: all of them are still in a research stage and to be integrated within future optical </span></span>network architectures.</p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"44 ","pages":"Article 100652"},"PeriodicalIF":2.2,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134534465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Dynamic Bandwidth allocation algorithm for avoiding Frame rearrangement in NG-EPON NG-EPON中避免帧重排的动态带宽分配算法
IF 2.2 4区 计算机科学
Optical Switching and Networking Pub Date : 2022-02-01 DOI: 10.1016/j.osn.2021.100645
Ammar Rafiq , Muhammad Faisal Hayat , Muhammad Usman Younus
{"title":"Dynamic Bandwidth allocation algorithm for avoiding Frame rearrangement in NG-EPON","authors":"Ammar Rafiq ,&nbsp;Muhammad Faisal Hayat ,&nbsp;Muhammad Usman Younus","doi":"10.1016/j.osn.2021.100645","DOIUrl":"10.1016/j.osn.2021.100645","url":null,"abstract":"<div><p><span>Next Generation Ethernet Passive Optical Network<span><span> (NG-EPON) is considered to be future prospective access technology that could help to achieve 100Gbps data rates. Wavelength bonding is a phenomenon that can help Optical Network Units (ONU) to enhance their transmission capabilities. Using wavelength bonding, an ONU could transmit on multiple </span>wavelength channels in parallel. The ONUs can achieve </span></span>data transmission rates<span> ranging from 25Gbps to 100Gbps. In upstream direction<span>, ONUs share different available channels in time-sharing manner to effectively utilize the resources in NG-EPON. Dynamic Wavelength &amp; Bandwidth Allocation (DWBA) algorithm is required for efficient allocation of wavelength and bandwidth resources in upstream direction. DWBA plays a vital role to help ONUs for transmission on multiple channels simultaneously. When an ONU transmits on multiple channels, a frame-rearrangement problem would occur at the Optical Line Terminal (OLT). OLT suffers from an extra overhead of frame-rearrangement; as the received frames at OLT are not in proper sequence. DWBA can play a vital role in avoiding frame rearrangement overhead. We proposed a DWBA algorithm to avoid/minimize frame rearrangement problem and efficient bandwidth allocation in NG-EPON. Our proposed DWBA avoids and minimizes frame-rearrangement problem and provides efficient resource allocation. We comparatively analyzed and evaluated our proposed DWBA with the existing DWBA algorithm. The simulation results show that our proposed DWBA minimizes frame-rearrangement problem as compared to existing DWBA algorithms and proves to be more efficient based on average (end-to-end) delay and completion time.</span></span></p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"43 ","pages":"Article 100645"},"PeriodicalIF":2.2,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.osn.2021.100645","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124141799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Low-margin efficient power and spectrum assignment in elastic optical networks 弹性光网络中的低边际高效功率和频谱分配
IF 2.2 4区 计算机科学
Optical Switching and Networking Pub Date : 2022-02-01 DOI: 10.1016/j.osn.2021.100649
Layhon Roberto Rodrigues dos Santos , Taufik Abrão
{"title":"Low-margin efficient power and spectrum assignment in elastic optical networks","authors":"Layhon Roberto Rodrigues dos Santos ,&nbsp;Taufik Abrão","doi":"10.1016/j.osn.2021.100649","DOIUrl":"10.1016/j.osn.2021.100649","url":null,"abstract":"<div><p><span>In this work the spectrum and power allocation<span> (SPA) trade-off in elastic optical network<span> (EON) is discussed in terms of the residual margin and residual spectrum in real-time application, both terms refer to the normalization of the sum-power and sum-spectrum in the resource allocation, respectively. Realistic scenarios have been investigated using optical performance monitoring techniques to measure the quality of transmission (QoT). The SPA-EON problem is formulated and three algorithms finding improved performance-complexity trade-offs are proposed to solve it: </span></span></span><em>i</em><span>) an analytical method based on combinatorial optimization, namely SPA-CO algorithm, ensuring the optimal solution but with a high computational cost; </span><em>ii</em>) a sub-optimum low-complexity method based on distance adaptive transmission (DAT), namely SPA-DAT, and <em>iii</em>) an SPA algorithm based on the distributed Verhulst algorithm, namely SPA-V, which achieves good solutions under acceptable computational time. A bunch of metrics, including probability of success, sum-power, and allocated spectrum are evaluated for the three SPA algorithms. The SPA-V was proved to be promising in EON operation, achieving the best performance-complexity trade-off.</p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"43 ","pages":"Article 100649"},"PeriodicalIF":2.2,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124701374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A deep neural network with a fuzzy multi-objective optimization model for fault analysis in an elastic optical network 基于模糊多目标优化模型的深度神经网络弹性光网络故障分析
IF 2.2 4区 计算机科学
Optical Switching and Networking Pub Date : 2022-02-01 DOI: 10.1016/j.osn.2021.100644
André Luiz Ferraz Lourenço, Amílcar Careli César
{"title":"A deep neural network with a fuzzy multi-objective optimization model for fault analysis in an elastic optical network","authors":"André Luiz Ferraz Lourenço,&nbsp;Amílcar Careli César","doi":"10.1016/j.osn.2021.100644","DOIUrl":"10.1016/j.osn.2021.100644","url":null,"abstract":"<div><p><span><span>The elastic optical network (EON) is the most attractive architecture for the next generation of optical networks. Dealing with high bit-rate traffic, EON faces the challenge of ensuring </span>survivability to operate with stringent </span>Service Level Agreements<span>. This article proposes a Deep Neural Network<span><span> model with a multi-objective Fuzzy Inference System (FIS) to solve the Routing and Spectrum Assignment problem with Shared Backup Path Protection. The algorithm aims to optimize the trade-off between </span>blocking probability<span> (BP) and fault restoration ratio (FRR). It uses a new spectrum-fragmentation metric to improve the FRR of affected connections. The FIS adds features of load balancing and alignment of allocation path solutions. We use figures of merit as BP of connection requests, FRR, spectrum utilization ratio, and connection downtime to evaluate the algorithm performance. The proposed algorithm organizes traffic in a less fragmented way, efficiently uses routing and protection resources, and performs well compared to similar algorithms related in the literature.</span></span></span></p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"43 ","pages":"Article 100644"},"PeriodicalIF":2.2,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.osn.2021.100644","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131712951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Efficient dynamic routing in Spectrally-Spatially Flexible Optical Networks based on traffic categorization and supervised learning methods 频谱空间柔性光网络中基于流量分类和监督学习方法的高效动态路由
IF 2.2 4区 计算机科学
Optical Switching and Networking Pub Date : 2022-02-01 DOI: 10.1016/j.osn.2021.100650
Róża Goścień, Paweł Ksieniewicz
{"title":"Efficient dynamic routing in Spectrally-Spatially Flexible Optical Networks based on traffic categorization and supervised learning methods","authors":"Róża Goścień,&nbsp;Paweł Ksieniewicz","doi":"10.1016/j.osn.2021.100650","DOIUrl":"10.1016/j.osn.2021.100650","url":null,"abstract":"<div><p>In this paper, we focus on the efficient dynamic routing in <span><em>Spectrally-Spatially Flexible </em><em>Optical Networks</em></span> (<span>ss-fon</span>) realized using <em>Single-Mode Fiber Bundles</em> (<span>smfb</span>s). We study two scenarios – unprotected network (<span>np</span>) and network protected by dedicated path protection (<span>dpp</span>) against a single link failure. For these configurations, we propose a dedicated optimization approach (<em>Enhanced Adaptive Spectral-Spatial Allocation</em> – <span>e-assa</span>), which makes use of the traffic categorization and application of different allocation strategies for different traffic categories. To select beneficial categorization rules, we employ <em>supervised learning</em><span> paradigm. We show that the selection of a beneficial regression algorithm to support network optimization cannot be performed based only on standard metrics like r2 but some additional measures/experiments are necessary. Then, we carry out extensive numerical experiments in order to tune the approach and to evaluate its efficiency based on the comparison with reference methods. The results prove high efficiency of the proposed optimization framework, which provides low blocking probability and significantly shorter processing time compared to the best of reference methods.</span></p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"43 ","pages":"Article 100650"},"PeriodicalIF":2.2,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123419388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Network-state-dependent routing and route-dependent spectrum assignment for PRMLSA problem in all-optical elastic networks 全光弹性网络PRMLSA问题的网络状态相关路由和路由相关频谱分配
IF 2.2 4区 计算机科学
Optical Switching and Networking Pub Date : 2022-02-01 DOI: 10.1016/j.osn.2021.100646
V.A.C. Vale , R.C. Almeida Jr. , K.D.R. Assis
{"title":"Network-state-dependent routing and route-dependent spectrum assignment for PRMLSA problem in all-optical elastic networks","authors":"V.A.C. Vale ,&nbsp;R.C. Almeida Jr. ,&nbsp;K.D.R. Assis","doi":"10.1016/j.osn.2021.100646","DOIUrl":"10.1016/j.osn.2021.100646","url":null,"abstract":"<div><p><span><span>The advent of Elastic Optical Networks<span> (EON) has led to significant improvements in optical network spectrum utilization when compared to Wavelength Division Multiplexing<span> Optical Networks. However, the EON brought challenges to be explored, notably the Power, Routing, Modulation Level and Spectrum Assignment (PRMLSA) problem. This article aims to explore techniques for the PRMLSA problem, being developed two strategies named Shortest and Least Allocated (SLA) Path and Route-Based Spectrum Assignment (RBSA), which, respectively, include the link </span></span></span>power spectral density<span> inspection dynamic for routing and a physical layer factor (distance traveled) for Spectrum Assignment. Furthermore, a simplified version of the Adaptive Power Assignment (APA) [1] algorithm is presented, in which a power value between the minimum necessary and the maximum allowed is assigned to the signal. The simultaneous use of the SLA and RBSA algorithms resulted in locks of up to 0.00132%, being more than 10 times lower than the 0.0164% of the Shortest-Path and First-Fit algorithms. While the simplification of the APA resulted in 18.38% of the execution time of its respective original version, but with an increase in the </span></span>blocking probability, which went from 0.016% to 0.031%, despite still being below conventional techniques, as the Constant Power Assignment strategy.</p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"43 ","pages":"Article 100646"},"PeriodicalIF":2.2,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127671730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Novel evolutionary planning technique for flexible-grid transmission in optical networks 一种新的光网络柔性电网传输进化规划技术
IF 2.2 4区 计算机科学
Optical Switching and Networking Pub Date : 2022-02-01 DOI: 10.1016/j.osn.2021.100648
Matheus R. Sena , Pedro J. Freire , Leonardo D. Coelho , Alex F. Santos , Antonio Napoli , Raul C. Almeida Jr.
{"title":"Novel evolutionary planning technique for flexible-grid transmission in optical networks","authors":"Matheus R. Sena ,&nbsp;Pedro J. Freire ,&nbsp;Leonardo D. Coelho ,&nbsp;Alex F. Santos ,&nbsp;Antonio Napoli ,&nbsp;Raul C. Almeida Jr.","doi":"10.1016/j.osn.2021.100648","DOIUrl":"10.1016/j.osn.2021.100648","url":null,"abstract":"<div><p><span><span>This paper proposes a novel joint resource allocation technique for flexible-grid systems by utilizing non-dominant sort </span>genetic algorithm<span> (NSGA-II) in a multi-objective optimization framework. It pioneers the implementation of an evolutionary mechanism to optimize resources as means of mitigation of physical layer impairments. This investigation initially introduces a proposal in which bandwidth reduction, maximization of the minimum signal-to-noise ratio (SNR) margin, and minimization/maximization of the sum of SNR margins are studied under dual-objective </span></span>Pareto analysis in the link-level scenario. Later, the technique extends existing provisioning strategies for network planning by targeting the reduction of blocking and spectral utilization of optical connections.</p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"43 ","pages":"Article 100648"},"PeriodicalIF":2.2,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131618966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Channel power optimization in WDM systems using co-evolutionary genetic algorithm 基于协同进化遗传算法的波分复用系统信道功率优化
IF 2.2 4区 计算机科学
Optical Switching and Networking Pub Date : 2022-02-01 DOI: 10.1016/j.osn.2021.100637
Masoud Vejdannik, Ali Sadr
{"title":"Channel power optimization in WDM systems using co-evolutionary genetic algorithm","authors":"Masoud Vejdannik,&nbsp;Ali Sadr","doi":"10.1016/j.osn.2021.100637","DOIUrl":"10.1016/j.osn.2021.100637","url":null,"abstract":"<div><p>In this work, we present a co-evolutionary genetic (CEGA) algorithm to adapt the optical launch powers and optimize the signal-to-noise ratio (SNR) values based on maximizing the minimum SNR margin. The introduced co-evolutionary algorithm provides lower computational complexity<span><span> rather than convex optimization<span><span> and linear programming techniques, applicable for both static and time-critical dynamic networking. The enhanced Gaussian noise<span> nonlinear model is exploited to take the physical-layer impairments into account, considering networks with partial spectrum utilization. To optimize the minimum SNR margin, we formulate the </span></span>power allocation<span> problem as a minimax optimization problem. To this end, a two-space </span></span></span>genetic algorithm<span> (GA) is proposed to reduce the computational complexity. The obtained results demonstrate that the introduced co-evolutionary algorithm outperforms the common optimization methods in terms of run time. It is shown that the computational complexity of proposed co-evolutionary algorithm is significantly lower than convex and single-space evolutionary approaches by several orders of magnitude. Moreover, the minimum SNR margin is improved by about 2.4 dB compared to a flat launch power optimization.</span></span></p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"43 ","pages":"Article 100637"},"PeriodicalIF":2.2,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.osn.2021.100637","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134445685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A novel channel-based model for the problem of routing, space, and spectrum assignment 一种新的基于信道的路由、空间和频谱分配问题模型
IF 2.2 4区 计算机科学
Optical Switching and Networking Pub Date : 2022-02-01 DOI: 10.1016/j.osn.2021.100636
Qian Wu, Jiading Wang, Maiko Shigeno
{"title":"A novel channel-based model for the problem of routing, space, and spectrum assignment","authors":"Qian Wu,&nbsp;Jiading Wang,&nbsp;Maiko Shigeno","doi":"10.1016/j.osn.2021.100636","DOIUrl":"10.1016/j.osn.2021.100636","url":null,"abstract":"<div><p><span>Space-division multiplexing (SDM) is regarded as one of the most promising technologies to satisfy the explosively growing internet traffic. Elastic optical networks with SDM is one of the newest </span>network architectures<span> for network planning in the future. However, the resource allocation problem<span><span> in these networks becomes more complicated due to the expansion of spatial dimensions. In this paper, we propose a novel channel-based integer linear programming (ILP) model for the problem of routing, space, and spectrum assignment (RSSA) in consideration of space lane change in SDM-EON. To evaluate our model, we make a comparison with the slot-based model [15] via simulation experiments. Different spatial switching </span>granularities are considered in our performance evaluation because they will greatly change the detailed results of allocation. By the numerical results, we find that our novel model has an overwhelming advantage over the previous slot-based one in computing time for the optimization process.</span></span></p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"43 ","pages":"Article 100636"},"PeriodicalIF":2.2,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129220814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信