为地铁LiFi网络创建AP的IVM和相关IHM

IF 1.9 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Xiaoqi Wang, Chaoqin Gan, Shibao Wu, Yitong Chen, Yixin Chen
{"title":"为地铁LiFi网络创建AP的IVM和相关IHM","authors":"Xiaoqi Wang,&nbsp;Chaoqin Gan,&nbsp;Shibao Wu,&nbsp;Yitong Chen,&nbsp;Yixin Chen","doi":"10.1016/j.osn.2022.100676","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this paper, the information value model (IVM) of an access point (AP) and the related intelligent handover<span> model (IHM) are firstly founded in the subway light-fidelity (LiFi) network. At first, based on statistical methods, the IVM is created by analyzing the behavioral characteristics of subway passengers. By the IVM, the probability of user access to each AP can be successfully predicted. Next, based on this probability, the IHM is created by deeply analyzing the alternating blockage problem of handholds. By the IHM, the system can self-adapt to the </span></span>hysteresis<span> state. This not only effectively avoids ping-pong handovers, but also reduces outage probability. Finally, by simulation, the effectiveness of the above IVM and IHM has been demonstrated. The simulation results indicate that the accuracy of predicting user target AP can be up to 92% by the IVM. Specially, compared with using the standard handover model, the throughput of the network not only increases 11.5%, but also the outage probability of the network decreases 23.6% by using the IHM.</span></p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"45 ","pages":"Article 100676"},"PeriodicalIF":1.9000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Founding AP's IVM and related IHM for subway LiFi network\",\"authors\":\"Xiaoqi Wang,&nbsp;Chaoqin Gan,&nbsp;Shibao Wu,&nbsp;Yitong Chen,&nbsp;Yixin Chen\",\"doi\":\"10.1016/j.osn.2022.100676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In this paper, the information value model (IVM) of an access point (AP) and the related intelligent handover<span> model (IHM) are firstly founded in the subway light-fidelity (LiFi) network. At first, based on statistical methods, the IVM is created by analyzing the behavioral characteristics of subway passengers. By the IVM, the probability of user access to each AP can be successfully predicted. Next, based on this probability, the IHM is created by deeply analyzing the alternating blockage problem of handholds. By the IHM, the system can self-adapt to the </span></span>hysteresis<span> state. This not only effectively avoids ping-pong handovers, but also reduces outage probability. Finally, by simulation, the effectiveness of the above IVM and IHM has been demonstrated. The simulation results indicate that the accuracy of predicting user target AP can be up to 92% by the IVM. Specially, compared with using the standard handover model, the throughput of the network not only increases 11.5%, but also the outage probability of the network decreases 23.6% by using the IHM.</span></p></div>\",\"PeriodicalId\":54674,\"journal\":{\"name\":\"Optical Switching and Networking\",\"volume\":\"45 \",\"pages\":\"Article 100676\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Switching and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1573427722000121\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Switching and Networking","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1573427722000121","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 6

摘要

本文首先在地铁光保真(LiFi)网络中建立了接入点(AP)的信息价值模型(IVM)和相应的智能切换模型(IHM)。首先,基于统计学的方法,通过分析地铁乘客的行为特征,创建IVM。通过IVM,可以成功预测用户访问每个AP的概率。其次,在此概率基础上,通过深入分析把手的交替堵塞问题,建立IHM。通过IHM,系统可以自适应滞后状态。这不仅有效地避免了乒乓切换,还降低了停机概率。最后,通过仿真验证了上述IVM和IHM的有效性。仿真结果表明,IVM预测用户目标AP的准确率可达92%。特别是,与使用标准切换模型相比,使用IHM不仅使网络吞吐量提高了11.5%,而且使网络的中断概率降低了23.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Founding AP's IVM and related IHM for subway LiFi network

In this paper, the information value model (IVM) of an access point (AP) and the related intelligent handover model (IHM) are firstly founded in the subway light-fidelity (LiFi) network. At first, based on statistical methods, the IVM is created by analyzing the behavioral characteristics of subway passengers. By the IVM, the probability of user access to each AP can be successfully predicted. Next, based on this probability, the IHM is created by deeply analyzing the alternating blockage problem of handholds. By the IHM, the system can self-adapt to the hysteresis state. This not only effectively avoids ping-pong handovers, but also reduces outage probability. Finally, by simulation, the effectiveness of the above IVM and IHM has been demonstrated. The simulation results indicate that the accuracy of predicting user target AP can be up to 92% by the IVM. Specially, compared with using the standard handover model, the throughput of the network not only increases 11.5%, but also the outage probability of the network decreases 23.6% by using the IHM.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optical Switching and Networking
Optical Switching and Networking COMPUTER SCIENCE, INFORMATION SYSTEMS-OPTICS
CiteScore
5.20
自引率
18.20%
发文量
29
审稿时长
77 days
期刊介绍: Optical Switching and Networking (OSN) is an archival journal aiming to provide complete coverage of all topics of interest to those involved in the optical and high-speed opto-electronic networking areas. The editorial board is committed to providing detailed, constructive feedback to submitted papers, as well as a fast turn-around time. Optical Switching and Networking considers high-quality, original, and unpublished contributions addressing all aspects of optical and opto-electronic networks. Specific areas of interest include, but are not limited to: • Optical and Opto-Electronic Backbone, Metropolitan and Local Area Networks • Optical Data Center Networks • Elastic optical networks • Green Optical Networks • Software Defined Optical Networks • Novel Multi-layer Architectures and Protocols (Ethernet, Internet, Physical Layer) • Optical Networks for Interet of Things (IOT) • Home Networks, In-Vehicle Networks, and Other Short-Reach Networks • Optical Access Networks • Optical Data Center Interconnection Systems • Optical OFDM and coherent optical network systems • Free Space Optics (FSO) networks • Hybrid Fiber - Wireless Networks • Optical Satellite Networks • Visible Light Communication Networks • Optical Storage Networks • Optical Network Security • Optical Network Resiliance and Reliability • Control Plane Issues and Signaling Protocols • Optical Quality of Service (OQoS) and Impairment Monitoring • Optical Layer Anycast, Broadcast and Multicast • Optical Network Applications, Testbeds and Experimental Networks • Optical Network for Science and High Performance Computing Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信