Max Huber, Jörg Schuster, Oliver G. Schmidt, Harald Kuhn, Daniil Karnaushenko
{"title":"A Mechanical–Electrical Model to Describe the Negative Differential Resistance in Membranotronic Devices","authors":"Max Huber, Jörg Schuster, Oliver G. Schmidt, Harald Kuhn, Daniil Karnaushenko","doi":"10.1002/pssr.202470010","DOIUrl":"https://doi.org/10.1002/pssr.202470010","url":null,"abstract":"","PeriodicalId":54619,"journal":{"name":"Physica Status Solidi-Rapid Research Letters","volume":"19 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140886964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spontaneously integrated multicolor InGaN micro‐LEDs for spectrum‐controllable broadband light sources","authors":"Yoshinobu Matsuda, Haruyoshi Miyawaki, Mitsuru Funato, Yoichi Kawakami","doi":"10.1002/pssr.202400094","DOIUrl":"https://doi.org/10.1002/pssr.202400094","url":null,"abstract":"Spontaneously integrated multicolor InGaN micro‐LEDs with a micro‐stripe topography achieve selective electrical operation with four different color emissions: green, bluish‐green, bluish‐purple, and purple. The entire micro‐stripe displays broadband emissions because the stripe topography with a convex lens–like cross‐section induces a continuous emission wavelength gradient in the overgrown InGaN active layers. Since each wavelength component is distributed along the stripe direction, multiple narrow <jats:italic>p</jats:italic>‐electrodes are positioned side‐by‐side across the stripe width. This design supports selective current injection into the corresponding local areas. This work represents an important step for realizing broadband visible light emitters where individual wavelength components composing the broad spectra can be modulated and switched independently.This article is protected by copyright. All rights reserved.","PeriodicalId":54619,"journal":{"name":"Physica Status Solidi-Rapid Research Letters","volume":"30 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140829344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hyunmin Cho, Donghee Kang, Yeonjin Yi, Ji Hoon Park
{"title":"Ultrathin LiF insertion and ensued contact resistance reduction in MoS2 channel transistors","authors":"Hyunmin Cho, Donghee Kang, Yeonjin Yi, Ji Hoon Park","doi":"10.1002/pssr.202400121","DOIUrl":"https://doi.org/10.1002/pssr.202400121","url":null,"abstract":"Molybdenum disulfide (MoS<jats:sub>2</jats:sub>) is a representative two dimensional n‐type semiconductor for various electron devices, but its lateral conduction performances are still restricted, which is mainly attributed to the contact resistance (R<jats:sub>c</jats:sub>) in field‐effect transistor. Low‐enough R<jats:sub>c</jats:sub> value must be realized toward practical device fabrications. Here, we have fabricated 2D MoS<jats:sub>2</jats:sub> FETs using chemical vapor deposited (CVD) MoS<jats:sub>2</jats:sub> channels with and without the ultrathin LiF interlayer, to demonstrate the practical benefits of LiF. In addition, we also apply the LiF to Al metal which is known more earth‐abundant than Au, expecting the similar positive effects of the inserted LiF. When 35 CVD‐grown MoS<jats:sub>2</jats:sub> channel FETs with Au were characterized on an identical gate dielectric substrate, the higher value of mobility ranging 55∽60 cm<jats:sup>2</jats:sup>/V s are achieved with the inserted LiF than that without LiF (∽20 cm<jats:sup>2</jats:sup>/V s). In the case of another MoS<jats:sub>2</jats:sub> FET with exfoliated flake channel and Al contact, its field‐effect mobility with LiF insertion appears to be ∽35 cm<jats:sup>2</jats:sup>/V s approaching to an almost R<jats:sub>c</jats:sub>‐free mobility (42 cm<jats:sup>2</jats:sup>/V s).This article is protected by copyright. All rights reserved.","PeriodicalId":54619,"journal":{"name":"Physica Status Solidi-Rapid Research Letters","volume":"91 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140829343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hui Xiong, Deng Yang, Zhilin Chen, Yuxin Jiang, Junhua Gao, Hongtao Cao
{"title":"Improved Thermal Stability and Oxygen‐Barrier Performance of SiO2 Thin Films by Modifying Amorphous Network Structure","authors":"Hui Xiong, Deng Yang, Zhilin Chen, Yuxin Jiang, Junhua Gao, Hongtao Cao","doi":"10.1002/pssr.202400064","DOIUrl":"https://doi.org/10.1002/pssr.202400064","url":null,"abstract":"Due to low refractive‐index and grain‐boundary‐free features, amorphous SiO<jats:sub>2</jats:sub> thin films possess inherent advantages in serving as antireflective and protective layers against atmosphere. However, under high‐temperature or/and oxidation harsh environment, the thermodynamic instability of Si‐O bonds and ‘depolymerization’ process among tetrahedral units [SiO<jats:sub>4</jats:sub>] would result in their insufficient thermal stability and oxygen‐barrier failure. By taking amorphous network former, small element electronegativity and high oxide dissociation energy into considerations, we introduce low‐level Zr dopant to induce short‐ and medium‐range structural modification in amorphous SiO<jats:sub>2</jats:sub> thin films, aiming to shorten Si‐O bond length and enhance network connectivity, respectively. As expected, the fabricated SiZrO thin films exhibit superior thermal stability and oxygen‐barrier performance without sacrificing their low‐index attribute. The Zr doping significantly elevates the oxygen‐inward‐diffusion activation energy from 0.94 eV to 1.95 eV in SiO<jats:sub>2</jats:sub> network. Further, utilizing as protective layer for W‐SiO<jats:sub>2</jats:sub> cermet, the SiZrO can effectively prevent the oxidation of W nanoparticles caused by oxygen inward diffusion. Undoubtedly, the exploration of amorphous SiZrO thin films offers exciting prospects for the application of functional coatings and devices under extreme conditions.This article is protected by copyright. All rights reserved.","PeriodicalId":54619,"journal":{"name":"Physica Status Solidi-Rapid Research Letters","volume":"13 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140803736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Current‐Induced Spin and Orbital Polarization in Magnetic Sliding Ferroelectrics","authors":"Haoxiang Dong, Jian Zhou","doi":"10.1002/pssr.202400062","DOIUrl":"https://doi.org/10.1002/pssr.202400062","url":null,"abstract":"One of the main challenges for modern information read and write technology is how to effectively and precisely modulate the interconversion between electricity and magnetism with a high data density. Herein, it is proposed that two‐dimensional magnetic sliding ferroelectrics can serve as a prototypical material platform with tunable electric current‐induced magnetization variation, a typical nonequilibrium magnetoelectric coupling process. Using a CrI<jats:sub>3</jats:sub> bilayer as the exemplary material, first‐principles calculations are performed to enumerate the monopole values, toroidal vectors, and quadrupole moment tensors. Their switching is also elucidated under a short distance sliding between the two layers, which can effectively flip the electric dipole moment. In addition to spin polarization which is usually studied for magnetic systems, the orbital moment contribution to the magnetoelectric coupling is also evaluated. They are found to be comparable in their magnitude and neither should be omitted, as opposed to equilibrium states. The work helps to reveal the underlining mechanisms among electronics, spintronics, and orbitronics in low‐dimensional multiferroic materials.","PeriodicalId":54619,"journal":{"name":"Physica Status Solidi-Rapid Research Letters","volume":"81 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140635719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jayanta Bhattacharjee, Rajashri Urkude, S. D. Singh
{"title":"Probing Bond Length and Compositional Disorder in β‐(AlxGa1‐x)2O3 Alloys Using Extended X‐ray Absorption Fine Structure Spectroscopy","authors":"Jayanta Bhattacharjee, Rajashri Urkude, S. D. Singh","doi":"10.1002/pssr.202400068","DOIUrl":"https://doi.org/10.1002/pssr.202400068","url":null,"abstract":"The local structure of β‐(Al<jats:sub>x</jats:sub>Ga<jats:sub>1‐x</jats:sub>)<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> alloys for various Al contents has been determined from extended X‐ray absorption fine structure spectroscopy (EXAFS) performed at the Ga K‐edge. A model to fit the experimental EXAFS data of the monoclinic β‐(Al<jats:sub>x</jats:sub>Ga<jats:sub>1‐x</jats:sub>)<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> alloy has been suggested to independently determine relevant local structure parameters. An increase in compositional disorder corresponding to the near neighbours (NNs) for lower Al contents establishes that the Al atom does occupy tetrahedron atomic sites in addition to octahedron sites even for smaller Al contents. The NNs and next‐nearest neighbours (NNNs) bond lengths corresponding to tetrahedron and octahedron coordinated Gallium (Ga) atoms with the surrounding Oxygen (O) atoms as well as tetrahedron‐tetrahedron/octahedron‐octahedron coordinated Ga‐Ga atoms on average display a decreasing trend with the Al content up to x=33.3% and then they do not change much with a further increase in Al content. While, tetrahedron‐octahedron coordinated Ga‐Ga atoms move far from each other with the Al content up to x=33.3% and then it does not change much. The physical picture derived from the EXAFS analysis indicates the creation of tetrahedra and octahedra sublattices at the local level for β‐(Al<jats:sub>x</jats:sub>Ga<jats:sub>1‐x</jats:sub>)<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> alloys, and their sizes decrease, but they move far apart from each other up to a certain Al content. Thereafter, their sizes and the distance between them do not change much. Thus, the EXAFS results provide a clear insight into the evolution of the local structure of β‐(Al<jats:sub>x</jats:sub>Ga<jats:sub>1‐x</jats:sub>)<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> alloys with the Al content, which may be useful for a better understanding of their physical properties.This article is protected by copyright. All rights reserved.","PeriodicalId":54619,"journal":{"name":"Physica Status Solidi-Rapid Research Letters","volume":"17 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140635713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evolution from topological nodal points to nodal line: realized in fused carbon allotrope","authors":"Jinhui Xing, Wentao Yue, Jiaren Yuan, Lizhi Zhang, Yingcong Wei, Lichuan Zhang, Yuee Xie, Yuanping Chen","doi":"10.1002/pssr.202400095","DOIUrl":"https://doi.org/10.1002/pssr.202400095","url":null,"abstract":"In the present investigation, via first‐principle calculations and theoretical analysis, we systematically investigated a new Dirac semimetal carbon system called C32, which is composed of pentagonal, hexagonal, heptagonal, and octagonal carbon rings. We verified the stability of C32 by calculating the phonon dispersion, elastic constants, etc., and proposed an appropriate pathway for experimental synthesis. Besides, it is discovered that the system holds the quadruple rotation and inversion symmetry, resulting in the emergence of eight twisted Dirac cones (D<jats:sub>1</jats:sub> and D<jats:sub>2</jats:sub>) with a highly anisotropic Fermi velocity from 3.83×10<jats:sup>5</jats:sup> to 8.96×10<jats:sup>5</jats:sup> m/s along different <jats:italic>k</jats:italic> directions. To substantiate the semimetallic nature of C32, we confirm its non‐trivial topological properties through the presence of topologically protected edge states and the nonzero ℤ<jats:sub>2</jats:sub> topological invariant. More importantly, by introducing biaxial strain, we uncovered that Dirac cones can gradually evolve into a nodal line, and the perfect nodal line can be obtained when the biaxial strain is 13.3%. Furthermore, by constructing the tight‐binding model, we perfectly repeated the appearance of the Dirac cone and explained its evolution into the nodal line under biaxial strain.This article is protected by copyright. All rights reserved.","PeriodicalId":54619,"journal":{"name":"Physica Status Solidi-Rapid Research Letters","volume":"29 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140630678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The rotating excitons in two‐dimensional materials: Valley Zeeman effect and chirality","authors":"Yu Cui, Xin-Jun Ma, Jia-Pei Deng, Shao-Juan Li, Ran-Bo Yang, Zhi-Qing Li, Zi-Wu Wang","doi":"10.1002/pssr.202400060","DOIUrl":"https://doi.org/10.1002/pssr.202400060","url":null,"abstract":"We propose the rotational dynamics of the intralayer and interlayer excitons with their inherent momenta of inertia in the monolayer and bilayer transition metal dichalcogenides, respectively, where the new chirality of exciton is endowed by the rotational angular momentum, namely, the formations of left‐ and right‐handed excitons at the +K and ‐K valleys, respectively. We find that angular momenta exchange between excitons and its surrounding phononic bath result in the large fluctuation of the effective <jats:italic>g</jats:italic>‐factor and the asymmetry of valley Zeeman splitting observed in most recently experiments, both of which sensitively depend on the magnetic moments provided by the phononic environment. This rotating exciton model not only proposes a new controllable knob in valleytronics, but opens the door to explore the angular momentum exchange of the chiral quasiparticles with the many‐body environment.This article is protected by copyright. All rights reserved.","PeriodicalId":54619,"journal":{"name":"Physica Status Solidi-Rapid Research Letters","volume":"78 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140630755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Emergence of ferroelectricity in P‐Type 2D In1.75Sb0.25Se3","authors":"Shasha Li, Tao Guo, Yong Yan, Yimin A Wu","doi":"10.1002/pssr.202400057","DOIUrl":"https://doi.org/10.1002/pssr.202400057","url":null,"abstract":"P‐type Two‐dimensional ferroelectric semiconductors (2D FeSs) play an increasingly essential role in the advanced nonvolatile and morphotropic beyond‐Moore electronic devices with high performance and low power consumption. But reliable p‐type 2D FeS with holes as majority carriers are still scarce. Here, we report the first experimental realization of room‐temperature ferroelectricity in van der Waals layered β‐In<jats:sub>1.75</jats:sub>Sb<jats:sub>0.25</jats:sub>Se<jats:sub>3</jats:sub> down to fewlayer. The origin of ferroelectricity in β‐In<jats:sub>1.75</jats:sub>Sb<jats:sub>0.25</jats:sub>Se<jats:sub>3</jats:sub> comes from aliovalent elemental substitution –antimony substituting to the indium sites (Sb<jats:sub>In</jats:sub>)– changing the local environment of the central‐layer Se atoms. Thanks to the intrinsic ferroelectric and semiconducting natures, ferroelectric semiconductor field‐effect transistor (FeSFET) devices based on β‐In<jats:sub>1.75</jats:sub>Sb<jats:sub>0.25</jats:sub>Se<jats:sub>3</jats:sub> exhibits reconfigurable, multilevel nonvolatile memory (NVM) states, which can be successively modulated by gate voltage stimuli. Furthermore, the inherent operation mechanism, owing to the switchable polarization, indicates that a neuromorphic memory is also possible with our 2D FeSFETs. These presented results facilitate the technological implementation of versatile 2D FeS devices for next‐generation logic‐in‐memory approach for Internet‐of‐Things (IoT) entities.This article is protected by copyright. All rights reserved.","PeriodicalId":54619,"journal":{"name":"Physica Status Solidi-Rapid Research Letters","volume":"7 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140625466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tian Luo, Zhehan Yu, Yijun Dai, Sitong Chen, Fang Ye, Wei Xu, Jichun Ye, Wei Guo
{"title":"Control of Surface Chemistry in Recess Etching Towards Normally‐OFF GaN MIS‐HEMTs","authors":"Tian Luo, Zhehan Yu, Yijun Dai, Sitong Chen, Fang Ye, Wei Xu, Jichun Ye, Wei Guo","doi":"10.1002/pssr.202400091","DOIUrl":"https://doi.org/10.1002/pssr.202400091","url":null,"abstract":"Reducing off‐state and gate leakage current is crucial in the development of metal‐insulator‐semiconductor high‐electron‐mobility‐transistors (MIS‐HEMTs). This work reports interface engineering in the gate recess region through low‐damage digital etching during the fabrication of normally‐off GaN MIS‐HEMTs. Conventional plasma etching leads to a reduction of the N/(Al+Ga) ratio, but this value recovered to almost 1 with optimized oxidation condition during digital etching, suggesting a reduction of the Al/Ga dangling bonds based on the proposed technique. GaN MIS‐HEMTs with digital etching exhibits a threshold voltage of 1.0 V at 1 µA/mm, a high ON/OFF current ratio of 10<jats:sup>10</jats:sup>, a gate breakdown voltage of 22 V, and a low gate leakage current of 10<jats:sup>‐8</jats:sup> mA/mm.This article is protected by copyright. All rights reserved.","PeriodicalId":54619,"journal":{"name":"Physica Status Solidi-Rapid Research Letters","volume":"65 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140625469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}