{"title":"Emergence of ferroelectricity in P‐Type 2D In1.75Sb0.25Se3","authors":"Shasha Li, Tao Guo, Yong Yan, Yimin A Wu","doi":"10.1002/pssr.202400057","DOIUrl":null,"url":null,"abstract":"P‐type Two‐dimensional ferroelectric semiconductors (2D FeSs) play an increasingly essential role in the advanced nonvolatile and morphotropic beyond‐Moore electronic devices with high performance and low power consumption. But reliable p‐type 2D FeS with holes as majority carriers are still scarce. Here, we report the first experimental realization of room‐temperature ferroelectricity in van der Waals layered β‐In<jats:sub>1.75</jats:sub>Sb<jats:sub>0.25</jats:sub>Se<jats:sub>3</jats:sub> down to fewlayer. The origin of ferroelectricity in β‐In<jats:sub>1.75</jats:sub>Sb<jats:sub>0.25</jats:sub>Se<jats:sub>3</jats:sub> comes from aliovalent elemental substitution –antimony substituting to the indium sites (Sb<jats:sub>In</jats:sub>)– changing the local environment of the central‐layer Se atoms. Thanks to the intrinsic ferroelectric and semiconducting natures, ferroelectric semiconductor field‐effect transistor (FeSFET) devices based on β‐In<jats:sub>1.75</jats:sub>Sb<jats:sub>0.25</jats:sub>Se<jats:sub>3</jats:sub> exhibits reconfigurable, multilevel nonvolatile memory (NVM) states, which can be successively modulated by gate voltage stimuli. Furthermore, the inherent operation mechanism, owing to the switchable polarization, indicates that a neuromorphic memory is also possible with our 2D FeSFETs. These presented results facilitate the technological implementation of versatile 2D FeS devices for next‐generation logic‐in‐memory approach for Internet‐of‐Things (IoT) entities.This article is protected by copyright. All rights reserved.","PeriodicalId":54619,"journal":{"name":"Physica Status Solidi-Rapid Research Letters","volume":"7 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi-Rapid Research Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/pssr.202400057","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
P‐type Two‐dimensional ferroelectric semiconductors (2D FeSs) play an increasingly essential role in the advanced nonvolatile and morphotropic beyond‐Moore electronic devices with high performance and low power consumption. But reliable p‐type 2D FeS with holes as majority carriers are still scarce. Here, we report the first experimental realization of room‐temperature ferroelectricity in van der Waals layered β‐In1.75Sb0.25Se3 down to fewlayer. The origin of ferroelectricity in β‐In1.75Sb0.25Se3 comes from aliovalent elemental substitution –antimony substituting to the indium sites (SbIn)– changing the local environment of the central‐layer Se atoms. Thanks to the intrinsic ferroelectric and semiconducting natures, ferroelectric semiconductor field‐effect transistor (FeSFET) devices based on β‐In1.75Sb0.25Se3 exhibits reconfigurable, multilevel nonvolatile memory (NVM) states, which can be successively modulated by gate voltage stimuli. Furthermore, the inherent operation mechanism, owing to the switchable polarization, indicates that a neuromorphic memory is also possible with our 2D FeSFETs. These presented results facilitate the technological implementation of versatile 2D FeS devices for next‐generation logic‐in‐memory approach for Internet‐of‐Things (IoT) entities.This article is protected by copyright. All rights reserved.
期刊介绍:
Physica status solidi (RRL) - Rapid Research Letters was designed to offer extremely fast publication times and is currently one of the fastest double peer-reviewed publication media in solid state and materials physics. Average times are 11 days from submission to first editorial decision, and 12 days from acceptance to online publication. It communicates important findings with a high degree of novelty and need for express publication, as well as other results of immediate interest to the solid-state physics and materials science community. Published Letters require approval by at least two independent reviewers.
The journal covers topics such as preparation, structure and simulation of advanced materials, theoretical and experimental investigations of the atomistic and electronic structure, optical, magnetic, superconducting, ferroelectric and other properties of solids, nanostructures and low-dimensional systems as well as device applications. Rapid Research Letters particularly invites papers from interdisciplinary and emerging new areas of research.