Physics of the Earth and Planetary Interiors最新文献

筛选
英文 中文
Hydrogenation of calcite and change in chemical bonding at high pressure: Diamond formation above 100 GPa 方解石的氢化和高压下化学键的变化:100 GPa 以上金刚石的形成
IF 2.4 3区 地球科学
Physics of the Earth and Planetary Interiors Pub Date : 2024-07-09 DOI: 10.1016/j.pepi.2024.107228
Alexander F. Goncharov , Huiyao Kuang , John S. Tse , Eric Edmund , Maxim Bykov , Elena Bykova , Stella Chariton , Vitali B. Prakapenka , Timofey Fedotenko , Nico Giordano , Mohamed Mezouar , Jesse S. Smith
{"title":"Hydrogenation of calcite and change in chemical bonding at high pressure: Diamond formation above 100 GPa","authors":"Alexander F. Goncharov ,&nbsp;Huiyao Kuang ,&nbsp;John S. Tse ,&nbsp;Eric Edmund ,&nbsp;Maxim Bykov ,&nbsp;Elena Bykova ,&nbsp;Stella Chariton ,&nbsp;Vitali B. Prakapenka ,&nbsp;Timofey Fedotenko ,&nbsp;Nico Giordano ,&nbsp;Mohamed Mezouar ,&nbsp;Jesse S. Smith","doi":"10.1016/j.pepi.2024.107228","DOIUrl":"https://doi.org/10.1016/j.pepi.2024.107228","url":null,"abstract":"<div><p>Synchrotron X-ray diffraction (XRD) and Raman spectroscopy in laser heated diamond anvil cells and first principles molecular dynamics (FPMD) calculations have been used to investigate the reactivity of calcite and molecular hydrogen (H<sub>2</sub>) at high pressures up to 120 GPa. We find that hydrogen reacts with calcite starting below 0.5 GPa at room temperature forming chemical bonds with carbon and oxygen. This results in the unit cell volume expansion; the hydrogenation level is much higher for powdered samples. Single-crystal XRD measurements at 8–24 GPa reveal the presence of previously reported III, IIIb, and VI calcite phases; some crystallites show up to 4% expansion, which is consistent with the incorporation of ≤ 1 hydrogen atom per formula unit. At 40–102 GPa XRD patterns of hydrogenated calcite demonstrate broadened features consistent with the calcite VI structure with incorporated hydrogen atoms. Above 80 GPa, the C<img>O stretching mode of calcite splits suggesting a change in the coordination of C<img>O bonds. Laser heating at 110 GPa results in the formation of C<img>C bonds manifested in the crystallization of diamond recorded by in situ XRD at 300 K and 110 GPa and by Raman spectroscopy on recovered samples commenced with C<sup>13</sup> calcite. We explored several theoretical models, which show that incorporation of atomic hydrogen results in local distortions of CO<sub>3</sub> groups, formation of corner-shared C<img>O polyhedra, and chemical bonding of H to C and O, which leads to the lattice expansion and vibrational features consistent with the experiments. The experimental and theoretical results support recent reports on tetrahedral C coordination in high-pressure carbonate glasses and suggest a possible source of the origin of ultradeep diamonds.</p></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141604878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrical conductivity model for transversely isotropic rocks with interconnected cracks 具有相互连接裂缝的横向各向同性岩石的导电模型
IF 2.4 3区 地球科学
Physics of the Earth and Planetary Interiors Pub Date : 2024-06-29 DOI: 10.1016/j.pepi.2024.107226
Yoshiya Usui
{"title":"Electrical conductivity model for transversely isotropic rocks with interconnected cracks","authors":"Yoshiya Usui","doi":"10.1016/j.pepi.2024.107226","DOIUrl":"https://doi.org/10.1016/j.pepi.2024.107226","url":null,"abstract":"<div><p>The electrical conductivity of subsurface rocks is generally anisotropic. The anisotropy of the subsurface electrical conductivity provides important information on the stress-strain state and geodynamics. To quantitatively interpret anisotropic conductivity structures revealed by electromagnetic surveys, it is essential to use a mixing model considering the anisotropy. Although there exists a mixing model for transversely isotropic rocks with crack-shaped pores, the previous model seems inappropriate in interpreting conductive anomalies revealed by electromagnetic exploration because cracks are assumed to be isolated in the model. Therefore, this study develops a theoretical mixing model for transversely isotropic rocks with mutually interconnected cracks by a statistical approach. The derived mixing model considers the macroscopic tortuosity of a collection of cracks as well as the tortuosity of each crack. The derived model can represent general transverse isotropy and includes the isotropic and parallel models as special cases. I compare the developed model to previously proposed mixing models, showing that the developed model can reproduce a much wider range of anisotropy than the already-existing anisotropic mixing model. By applying the developed model to an example of the anisotropic conductivity in the oceanic upper crust inferred by electromagnetic exploration, I demonstrate that the developed mixing model enables us to quantitatively infer the crack orientation and fluid volume fraction that reproduce significant anisotropic conductivity found by field observations. Furthermore, I compare the developed model to the anisotropic seismic velocity model for fluid-filled cracks.</p></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0031920124000840/pdfft?md5=97fe02e6169550ae880f6fa4076adefe&pid=1-s2.0-S0031920124000840-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141543749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal instability from rock magnetic measurements confirms the underestimates of absolute paleointensity records during the Santa Rosa geomagnetic excursion 岩石磁场测量得出的热不稳定性证实了圣罗莎地磁偏移期间绝对古强度记录被低估的情况
IF 2.4 3区 地球科学
Physics of the Earth and Planetary Interiors Pub Date : 2024-06-28 DOI: 10.1016/j.pepi.2024.107225
Junxiang Miao , Huapei Wang
{"title":"Thermal instability from rock magnetic measurements confirms the underestimates of absolute paleointensity records during the Santa Rosa geomagnetic excursion","authors":"Junxiang Miao ,&nbsp;Huapei Wang","doi":"10.1016/j.pepi.2024.107225","DOIUrl":"https://doi.org/10.1016/j.pepi.2024.107225","url":null,"abstract":"<div><p>Geomagnetic excursion events have been widely studied in recent years as a key process for understanding the evolution of the Earth's magnetic field. The Santa Rosa geomagnetic excursion (SRE) event during the Matuyama chron has been globally recorded in sediment sequences and lava flows. Galapagos lavas distributed in near-equatorial with an <sup>40</sup>Ar/<sup>39</sup>Ar age of 925.7 ± 4.6 ka display absolute paleointensity values of about 14% of the modern magnetic field, which is a valuable record of the Earth's magnetic field strength during the SRE event. However, the above extremely low estimates of paleointensities during the SRE were fitting from higher temperature segments (400 °C–575 °C) from previous paleointensity experiments, which is biased by the thermal instability of Galapagos lava samples during high-temperature heating treatments. From our comprehensive rock magnetic experiments in this study, Galapagos lava samples exhibit thermal instability after heating treatments higher than 400 °C. The severe thermal alteration occurred after the heating temperature reached 500 °C, mainly manifested as an increase in remanence-carrying capacities, such as the enhanced ability of paleointensity specimens to record partial thermoremanent magnetization, resulting in underestimated paleointensities during the SRE. In-depth experiments on rock magnetism and hysteresis parameters analysis provide a powerful method to detect the thermal instability of lava samples, which can help us confirm the biased geomagnetic field strength during this short-lived excursion period and prevent misinterpretations of the Earth's magnetic field evolution through erroneous low paleointensity records.</p></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141543750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inversion of fluid-release rates from episodic tremor and slip signals in subduction zones via a coarse-grained reaction diffusion model 通过粗粒度反应扩散模型反演俯冲带偶发性震颤和滑动信号的流体释放率
IF 2.4 3区 地球科学
Physics of the Earth and Planetary Interiors Pub Date : 2024-06-27 DOI: 10.1016/j.pepi.2024.107223
Qingpei Sun , Klaus Regenauer-Lieb , Manman Hu
{"title":"Inversion of fluid-release rates from episodic tremor and slip signals in subduction zones via a coarse-grained reaction diffusion model","authors":"Qingpei Sun ,&nbsp;Klaus Regenauer-Lieb ,&nbsp;Manman Hu","doi":"10.1016/j.pepi.2024.107223","DOIUrl":"https://doi.org/10.1016/j.pepi.2024.107223","url":null,"abstract":"<div><p>Episodic Tremor and Slip (ETS) events showcase dynamic interactions of oscillatory slow slips and tremors deep within subduction zones and offer a window into Earth's internal dynamics. However, the exact mechanisms driving these events remain unresolved. This study proposes a novel approach that goes beyond traditional explanations focused on fluid pressure from mineral dehydration. Existing models often neglect the intricate interplay between fluid and rock pressures across various depths and potential fluid sources. This calls for a more comprehensive understanding of how fluid release from reactions interacts with rock deformation. The present formulation captures the interplay between fluid and solid pressures providing a more rigorous picture of ETS events. It employs a minimalistic and efficient approach based on integrating dehydration reactions. The model thereby develops a generic framework for mineral dehydration, offering an enhanced perspective of the underlying processes without the need to trace down to specific minerals. It allows a refined fit to GPS data by including high-frequency components from linear and nonlinear stability analyses, giving rise to improved correlation coefficients. Through the inclusion of the dynamic interplay between fluid and rock pressure diffusion within subduction zones, we propose a unified model of ETS events.</p></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141486911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strain localization by diffusion creep of Bridgmanite-Ferropericlase mixture: Application of self-consistent method 通过扩散蠕变对布里奇曼岩-辉绿岩混合物进行应变定位:自洽方法的应用
IF 2.4 3区 地球科学
Physics of the Earth and Planetary Interiors Pub Date : 2024-06-21 DOI: 10.1016/j.pepi.2024.107224
H.E. Cho , Shun-ichiro Karato
{"title":"Strain localization by diffusion creep of Bridgmanite-Ferropericlase mixture: Application of self-consistent method","authors":"H.E. Cho ,&nbsp;Shun-ichiro Karato","doi":"10.1016/j.pepi.2024.107224","DOIUrl":"https://doi.org/10.1016/j.pepi.2024.107224","url":null,"abstract":"<div><p>In this study, we investigate the finite deformation of a polycrystalline mixture of bridgmanite (Br) and ferropericlase (Fp) by diffusion creep at the lower mantle-like temperature and pressure by using the self-consistent approach. We explore the influence of volume fraction of Fp, viscosity contrast, and strain dependence (effect of shape change) under both axial (coaxial deformation) and simple shear (non-coaxial deformation). Our present study shows: i) the strength (viscosity) contrast between Fp and Br increases with strain since the viscosity of Fp significantly decreases as Fp grain elongates, and (ii) deformation starts from nearly homogeneous strain to finally nearly homogeneous stress under simple shear whereas deformation behavior remains nearly homogeneous strain under axial deformation. A more substantial creep rate partitioning occurs in simple shear than in axial deformation. These results imply that strain localization <em>via</em> diffusion creep might occur in the lower mantle, particularly in regions where the simple shear is dominated (<em>i.e.</em>, in the boundary layers (<em>e.g.</em>, the D″ layer)).</p></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141483834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enigmatic mixture of magnetite magnetofossils and diagenetic greigite as the magnetic carriers of the Early Miocene lacustrine sediments from the Most Basin in Central Europe 作为中欧莫斯特盆地早中新世湖相沉积物磁性载体的磁铁矿磁化石和成岩绿泥石神秘混合物
IF 2.4 3区 地球科学
Physics of the Earth and Planetary Interiors Pub Date : 2024-06-06 DOI: 10.1016/j.pepi.2024.107216
Hakan Ucar , Gunther Kletetschka , Ramon Egli , Karel Mach , Michael S. Petronis , Hana Grison , Stephanie Scheidt , Petr Schnabl , Simon Kdyr
{"title":"Enigmatic mixture of magnetite magnetofossils and diagenetic greigite as the magnetic carriers of the Early Miocene lacustrine sediments from the Most Basin in Central Europe","authors":"Hakan Ucar ,&nbsp;Gunther Kletetschka ,&nbsp;Ramon Egli ,&nbsp;Karel Mach ,&nbsp;Michael S. Petronis ,&nbsp;Hana Grison ,&nbsp;Stephanie Scheidt ,&nbsp;Petr Schnabl ,&nbsp;Simon Kdyr","doi":"10.1016/j.pepi.2024.107216","DOIUrl":"10.1016/j.pepi.2024.107216","url":null,"abstract":"<div><p>The Early Miocene lacustrine sediments of the Most Basin in the Czech Republic preserve a European continental paleoenvironmental archive. A number of paleoenvironmental and magnetostratigraphic studies have been carried out on sediment cores from boreholes due to ongoing coal mining in the basin. However, the magnetic carriers of the studied sediments have not been identified clearly. Here, we present a detailed paleo-rock magnetic study from the Burdigalian sediments near the Bilina mining area, Most Basin. The studied clay sediments cover the period of local lakes and a basin-wide lake above the main coal seam. Our results suggest that the magnetic carriers of the studied section in the Most Basin are mixtures of authigenic greigite and magnetite magnetofossils with overlapping magnetic signatures. Greigite is formed by migration of pore water through the sediment column, where iron from siderite grains reacts with these fluids with limited H<sub>2</sub>S, which then favors greigite precipitation. The co-existence of greigite and magnetite indicates a partial dissolution of magnetofossils due to H<sub>2</sub>S deficiency. Diagenetic greigite has been problematic in paleomagnetic studies due to an unknown time lag between the depositional remanence and the chemical remanent magnetization (CRM). A ghost polarity interval reveals that greigite acquired at least ∼45 kyr delayed CRM. The revealed timing of remanence acquisition brings a new perspective to the chronostratigraphic structure of the Most Basin.</p></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141393963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantifying the features of earthquake clusters in north-Central Iran, based on nearest-neighbor distances and network analysis 根据近邻距离和网络分析量化伊朗中北部地震群的特征
IF 2.3 3区 地球科学
Physics of the Earth and Planetary Interiors Pub Date : 2024-06-03 DOI: 10.1016/j.pepi.2024.107215
Mohammad Talebi , Mehdi Zare , Antonella Peresan
{"title":"Quantifying the features of earthquake clusters in north-Central Iran, based on nearest-neighbor distances and network analysis","authors":"Mohammad Talebi ,&nbsp;Mehdi Zare ,&nbsp;Antonella Peresan","doi":"10.1016/j.pepi.2024.107215","DOIUrl":"10.1016/j.pepi.2024.107215","url":null,"abstract":"<div><p>The statistical features of earthquake clusters in North-Central Iran (Tehran Region) are investigated, with the aim of quantitatively characterizing the properties of earthquake triggering and allow exploring their possible relations with the tectonic setting of the study area.</p><p>The nearest-neighbor approach is used for the identification of the earthquake clusters in the space-time-energy domain. This approach permits for a data-driven identification of clusters so that, within multi-event clusters, the features of secondary and higher orders dependent events can be explored. The study is based on a revised dataset that is extracted from the catalog compiled by the Iranian Seismological Center (IRSC) for the period of 1996–2022. In order to exclude the effect of non-tectonic events, which turn out quite numerous within the study region, explosions within quarry-rich areas are removed; the identification of non-tectonic events is performed by considering the normalized ratios of daytime to nighttime events in an iterative removal procedure. According to preliminary analysis of the resulting catalog, an area is selected, within which a satisfactory completeness level is assessed for events with magnitude &gt;2.0. Robust values of the scaling parameters, namely the b-value and the fractal dimension of epicenters, are also computed and are used to calculate the nearest-neighbor distances and to identify the earthquake clusters.</p><p>The nearest-neighbor method also permits to investigate the internal structure of earthquake sequences, and to differentiate the spatial properties of seismicity according to the different topological features of the clusters structure. The obtained results allow us identifying two macro-areas, approximately separated by the 52°E meridian, which are characterized by different clustering features, namely: high complexity indexes, indicating simple (burst-like) structure of clusters, to the East; low complexity index, corresponding to complex multi-level (swarm-like) structure of clusters, to the West. The complexity measures, borrowed from network theory (i.e. the Closeness and Outdegree Centralization indexes), consistently capture the complexity of the identified clusters, and confirm that the cluster structures have distinct preferred geographic locations. The territorial heterogeneity of the examined clustering properties can be related with the spatial variability of tectonic, structural and geophysical features of the Alborz region, in good agreement with findings from the Alps-Dinarides junction (Northeastern Italy), a region also characterized by a contractional structural setting, mainly including reverse and strike-slip faulting systems, and by moderate to high seismic activity.</p></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141282201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution and disappearance of the paleo-West Pacific Anomaly: Implications to the future of South Atlantic Anomaly 古西太平洋异常的演变和消失:对南大西洋异常未来的影响
IF 2.3 3区 地球科学
Physics of the Earth and Planetary Interiors Pub Date : 2024-06-01 DOI: 10.1016/j.pepi.2024.107214
Yaochen Yue , Jiawei Gao , Fei He , Yong Wei , Shuhui Cai , Huapei Wang , Yuqi Wang , Zhaojin Rong , Zhonghua Yao , Wei Lin , Yongxin Pan
{"title":"Evolution and disappearance of the paleo-West Pacific Anomaly: Implications to the future of South Atlantic Anomaly","authors":"Yaochen Yue ,&nbsp;Jiawei Gao ,&nbsp;Fei He ,&nbsp;Yong Wei ,&nbsp;Shuhui Cai ,&nbsp;Huapei Wang ,&nbsp;Yuqi Wang ,&nbsp;Zhaojin Rong ,&nbsp;Zhonghua Yao ,&nbsp;Wei Lin ,&nbsp;Yongxin Pan","doi":"10.1016/j.pepi.2024.107214","DOIUrl":"10.1016/j.pepi.2024.107214","url":null,"abstract":"<div><p>Palaeomagnetic and modern geomagnetic measurements indicate that the South Atlantic Anomaly (SAA) has undergone rapid changes over the past few hundred years. Its minimum intensity decreased at an average rate of 26 not yr<sup>−1</sup>, accompanied by a continuous westward drift and spatial expansion. Recently, a secondary minimum of SAA emerged near southern Africa, leading to speculation that expansion of the SAA could indicate an impending geomagnetic reversal. Here, we focus on the evolution and disappearance of the paleo-West Pacific Anomaly (WPA), as another SAA-like structure, which may have implications for the future of SAA evolution. We regard the WPA as SAA-like due to its feature and its association with a reversal flux patch on the core-mantle boundary. Consequently, we suggest that the observed evolutionary pattern in the WPA can serve as a reference for other negative anomalies, such as the SAA. By analysing models that combine datasets of archaeomagnetic and historical records, such as gufm1 and HistKalmag, it is found that the WPA occurred between 1600 and 1820 CE. Over its duration, the WPA experienced phases of rapid expansion, drift, and division. Eventually, its primary component faded away, giving rise to a new segment that continued to expand. The initial two evolutionary phases of the WPA are similar to the evolution of the SAA over the past century. According to the WPA's evolution, it suggests that the current state of the SAA may correspond to an early stage of splitting. Forecasts based on the evolution of the WPA indicate a rapid expansion of the anomalous region in the short term, followed by a gradual reduction in its primary component and continued expansion of a new local minimum. This study provides valuable insight into the evolution of the SAA and highlights the potential utility of the WPA as an evolutionary reference for such geomagnetic phenomena.</p></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141276684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A 3D computational model for ground motion simulation in Peninsular India 印度半岛地动模拟三维计算模型
IF 2.3 3区 地球科学
Physics of the Earth and Planetary Interiors Pub Date : 2024-05-31 DOI: 10.1016/j.pepi.2024.107208
K.P. Sreejaya, S.T.G. Raghukanth
{"title":"A 3D computational model for ground motion simulation in Peninsular India","authors":"K.P. Sreejaya,&nbsp;S.T.G. Raghukanth","doi":"10.1016/j.pepi.2024.107208","DOIUrl":"https://doi.org/10.1016/j.pepi.2024.107208","url":null,"abstract":"<div><p>Due to the gradual and constant accumulation of seismic energy, Peninsular India (PI) is typically considered seismically stable with low to moderate seismicity. The seismic studies in Peninsular India always resorted to synthetic ground motion simulations, because of the limited instrumentation and hence lack of recorded data. In the absence of a well-defined medium model for PI, the usual practice is to use simple site proxies or one-dimensional velocity structures for ground motion simulations. However, the region consists of multi-scale geometric complexities, significant topography, and sedimentary basins and is surrounded by deep oceans. Thus, the radiated seismic wave field in the region is influenced by the medium properties and in the absence of a well-defined tomography model the reliable estimation of seismic hazard is a challenging problem in PI. Therefore, the seismic wave propagation in PI can be investigated using numerical simulation with reliable 3D computational model for PI, incorporating the knowledge of the underlying Earth structure. Hence, the present study attempts to develop a sophisticated three-dimensional (3D) medium model of Peninsular India for physics-based ground motion simulations for regional earthquakes. This is aided by the availability of one-dimensional (1D) velocity models and the crustal structure from the receiver function analysis which provides valuable insight into the variation of material properties in the region. In the present study, &gt;100 s of 1D velocity profiles are collected from various literature, which is then grouped under 23 different geological regions identified in PI (as per GSI (2000)). The averaged material properties are assigned per each geological region and the information on sediment depths, basin geometry, topography, and bathymetry are incorporated. We use the spectral element method (SEM) to calibrate our 3D computational model by simulating synthetic seismograms and comparing them to recorded ground motions for two past earthquakes: the 2001 Mw 7.6 Bhuj earthquake and the 1997 Mw 5.8 Jabalpur earthquake. Further, the seismic waveforms at the near field of 2001 Mw 7.6 Bhuj event are simulated using a refined regional model. The spatial variability of associated seismic intensities and peak ground velocity (PGV) amplification are investigated. In addition, a study of the impact of model depth truncation and sphericity on ground motion is also conducted. The implemented medium model is the first of its kind for Peninsular India and can reliably be used in seismic wave propagation studies in the region. The simulated outcomes from the model are of engineering importance as these results can be used for seismic hazard assessment of the region.</p></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141312777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lateral electrical conductivity variations along the Main Himalayan thrust in the northwestern Himalayas: Insights from 3D Magnetotelluric forward modeling 喜马拉雅山脉西北部喜马拉雅主脉的侧向导电率变化:三维磁层前向建模的启示
IF 2.3 3区 地球科学
Physics of the Earth and Planetary Interiors Pub Date : 2024-05-24 DOI: 10.1016/j.pepi.2024.107213
S. Dhamodharan , Khasi Raju , Prasanta K. Patro
{"title":"Lateral electrical conductivity variations along the Main Himalayan thrust in the northwestern Himalayas: Insights from 3D Magnetotelluric forward modeling","authors":"S. Dhamodharan ,&nbsp;Khasi Raju ,&nbsp;Prasanta K. Patro","doi":"10.1016/j.pepi.2024.107213","DOIUrl":"10.1016/j.pepi.2024.107213","url":null,"abstract":"<div><p>Understanding the arc parallel variation on the geometry of the Main Himalayan Thrust (MHT) is as important as understanding the arc perpendicular variation in the Himalayas. The geometric variability of the MHT holds significant implications for the occurrence of major and great earthquakes. Three-dimensional magnetotelluric (MT) forward modeling enables the investigation of potential crustal models along the MHT in northwest Himalayas. MT impedance tensors were computed utilizing the 3D forward modeling code MTD3FWD. Previously established MT resistivity and seismic velocity models from various sectors of the northwestern Himalayas were employed as inputs for generating the resistivity mesh necessary for 3D forward modeling. The computed impedance tensors by 3D forward computation were cross-referenced with the original published MT data to validate their accuracy. A lateral resistivity cross section is also derived from the 3D forward model along the sub-Himalaya and lesser-Himalaya region to study the lateral heterogeneity. The lateral resistivity cross-section reveals significant heterogeneity within the crust, marked by both high and low-resistive structures and a possible lateral ramp along the MHT. The geometry of the lateral MHT showcases a gradual incline within the Himachal sector and a steep ramp within the Garhwal and Kumaun sectors in the northwestern Himalayas. The crustal architecture exhibits distinct nearly-vertical resistive and conductive features beneath the study area. Consequently, the crust within this region is characterized by considerable heterogeneity, influenced by a network of subsurface faults and ridges. The Delhi Haridwar Ridge, which exhibits high resistivity, plays a significant role in dictating the lateral dip of the MHT and exerting control over seismic activity patterns in the region.</p></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141139033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信