Physics of the Earth and Planetary Interiors最新文献

筛选
英文 中文
Spatial variation of crustal anisotropy in Simeulue Island, Indonesia, from shear wave splitting analysis 印尼Simeulue岛地壳各向异性的空间变化——基于横波分裂分析
IF 2.4 3区 地球科学
Physics of the Earth and Planetary Interiors Pub Date : 2025-04-18 DOI: 10.1016/j.pepi.2025.107362
Syuhada Syuhada , Faiz Muttaqy , Titi Anggono , Bayu Pranata , Nanang T. Puspito , Mohamad Ramdhan , Febty Febriani , Muhammad Ma'ruf Mukti , Cinantya Nirmala Dewi , Mohammad Hasib , Aditya Dwi Prasetio , Atin Nur Aulia , Ade Surya Putra
{"title":"Spatial variation of crustal anisotropy in Simeulue Island, Indonesia, from shear wave splitting analysis","authors":"Syuhada Syuhada ,&nbsp;Faiz Muttaqy ,&nbsp;Titi Anggono ,&nbsp;Bayu Pranata ,&nbsp;Nanang T. Puspito ,&nbsp;Mohamad Ramdhan ,&nbsp;Febty Febriani ,&nbsp;Muhammad Ma'ruf Mukti ,&nbsp;Cinantya Nirmala Dewi ,&nbsp;Mohammad Hasib ,&nbsp;Aditya Dwi Prasetio ,&nbsp;Atin Nur Aulia ,&nbsp;Ade Surya Putra","doi":"10.1016/j.pepi.2025.107362","DOIUrl":"10.1016/j.pepi.2025.107362","url":null,"abstract":"<div><div>Simeulue Island sits near the northern subduction margin of the Sumatran Megathrust, which is characterized by high tectonic activities and earthquakes. The oblique subduction along this margin has developed a complicated crustal deformation on the island, including faulting, uplifting and crustal segmentation. In the subduction zone, crustal anisotropy is often caused by stress-induced anisotropy in which the anisotropy direction is parallel to the stress direction. However, the complex crustal structure around the study area may produce a complicated anisotropy pattern. Here, we measure crustal seismic anisotropy from shear wave splitting analysis using the seismic data recorded at eight temporary stations spread across Simeulue Island. We apply the 2-D tomographic inversion and spatial averaging technique to map the splitting anisotropy patterns around the region. This research allows us to gain new insight into the crustal deformation pattern and its relationship with the complicated crustal structure beneath the island. The splitting result shows variations of anisotropy pattern around the study area. The spatially averaged fast directions at the northern region are trench-parallel, consistent with the strike of the geological features resulting from the strain partitioning deformation of the oblique convergence. Higher strength anisotropy is also observed in this area, indicating that the local fault system may strongly contribute to the crustal anisotropy. In the southern part of the island, the spatial averaging of fast direction gives a consistent pattern with the maximum regional stress direction, suggesting that anisotropy is mainly associated with stress-aligned microcracks. The central part of the island exhibits different splitting directions, marking the boundary of the geological structures between the areas in the north and south of the island. This pattern is also accompanied by high-strength anisotropy, suggesting that the source may be associated with the subducting geological structures beneath the area playing a significant role in the rupture barrier of the great events, as suggested by several previous studies.</div></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":"363 ","pages":"Article 107362"},"PeriodicalIF":2.4,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143850608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seismotectonics of the Gulf of Gökova, Southwest Anatolia, using double-difference seismic tomography, earthquake relocation, and moment tensor solutions: The 20 July 2017 Mw6.5 Bodrum-Kos earthquake 使用双差地震层析成像、地震重新定位和矩张量解的西南安纳托利亚Gökova湾地震构造:2017年7月20日Mw6.5 Bodrum-Kos地震
IF 2.4 3区 地球科学
Physics of the Earth and Planetary Interiors Pub Date : 2025-04-17 DOI: 10.1016/j.pepi.2025.107361
Tuğba Özdemirli-Esat , Melike Doğanay-Özkan , Korhan Esat
{"title":"Seismotectonics of the Gulf of Gökova, Southwest Anatolia, using double-difference seismic tomography, earthquake relocation, and moment tensor solutions: The 20 July 2017 Mw6.5 Bodrum-Kos earthquake","authors":"Tuğba Özdemirli-Esat ,&nbsp;Melike Doğanay-Özkan ,&nbsp;Korhan Esat","doi":"10.1016/j.pepi.2025.107361","DOIUrl":"10.1016/j.pepi.2025.107361","url":null,"abstract":"<div><div>The 20 July 2017 Mw6.5 Bodrum-Kos main shock that occurred in the Gulf of Gökova is one of the largest earthquakes in the north-south extensional Aegean region. In this study, we generated the first three-dimensional local earthquake tomography model for the Gökova region using the double-difference tomography algorithm to provide a contribution to discussions on the source fault of the main shock. The 2500 earthquake records of magnitude ≥2.3 between 01 January 2017 and 31 December 2017 were chosen from the 19 strong-motion accelerometer and 11 weak-motion seismometer stations. The P- and S-wave velocity models and Vp/Vs ratio model of the study area were created, and 1488 earthquakes were relocated. With the help of seismic tomographic imaging, we concluded that the main shock occurred on the south-dipping Gökova Fault Zone, not on the north-dipping fault plane suggested in some studies. We also determined that some earthquakes that occurred in 2017 were associated with a north-dipping normal fault observed down to 10 km depth immediately north of the Gökova Fault Zone. Additionally, the Datça-Kale Main Breakaway Fault, which separates the sedimentary cover and the basement rocks, was also determined in the tomographic profiles. The kinematic analysis of moment tensor solutions of 64 earthquakes, mostly with magnitudes greater than 4, is consistent with the north-south extensional tectonic regime in the Aegean region.</div></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":"364 ","pages":"Article 107361"},"PeriodicalIF":2.4,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143907705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to “Lithospheric structure beneath the Upper Indus Basin and its adjacent regions from inversion of surface wave dispersion” [Physics of the Earth and Planetary Interiors Volume 362, May 2025, 107345] “从表面波频散反演印度河上游盆地及其邻近地区的岩石圈结构”的勘误表[地球与行星内部物理,第362卷,2025年5月,107345]
IF 2.4 3区 地球科学
Physics of the Earth and Planetary Interiors Pub Date : 2025-04-14 DOI: 10.1016/j.pepi.2025.107353
Deepak Kumar , G. Suresh , M.L. Sharma , Siddharth Dey , S.C. Gupta
{"title":"Corrigendum to “Lithospheric structure beneath the Upper Indus Basin and its adjacent regions from inversion of surface wave dispersion” [Physics of the Earth and Planetary Interiors Volume 362, May 2025, 107345]","authors":"Deepak Kumar ,&nbsp;G. Suresh ,&nbsp;M.L. Sharma ,&nbsp;Siddharth Dey ,&nbsp;S.C. Gupta","doi":"10.1016/j.pepi.2025.107353","DOIUrl":"10.1016/j.pepi.2025.107353","url":null,"abstract":"","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":"365 ","pages":"Article 107353"},"PeriodicalIF":2.4,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144241633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The history of geomagnetic secular variation hemispherical dichotomies 地磁世俗变化半球二分法的历史
IF 2.4 3区 地球科学
Physics of the Earth and Planetary Interiors Pub Date : 2025-04-11 DOI: 10.1016/j.pepi.2025.107352
Mathis Colas, Filipe Terra-Nova, Hagay Amit
{"title":"The history of geomagnetic secular variation hemispherical dichotomies","authors":"Mathis Colas,&nbsp;Filipe Terra-Nova,&nbsp;Hagay Amit","doi":"10.1016/j.pepi.2025.107352","DOIUrl":"10.1016/j.pepi.2025.107352","url":null,"abstract":"<div><div>Monitoring the geomagnetic field and its secular variation (SV) is essential for understanding the Earth's internal dynamics. In particular, the SV provides an image of the geodynamo at the top of the core. However, the SV is not available for paleomagnetic field models. Here, we propose a new index for assessing the paleomagnetic SV. This new index is based on the well-established inverse linear relationship between the SV timescales and the degree of spherical harmonics. We demonstrate using the historical field where the SV is available that this index adequately captures the large-scale features of the true SV, in particular the SV Atlantic/Pacific and North/South dichotomies. The recovery of these SV hemispherical dichotomies by our proposed index does not deteriorate from truncated fields at spherical harmonics degree 14 to 5. Applied to a paleomagnetic field model for the past 100 kyr, we find a persistent SV dichotomy between the quiet Pacific and active Atlantic hemispheres, consistent with heterogeneous inner core freezing. In addition, according to our index, a persistent stronger SV prevails at the northern hemisphere, which is the case at the present day due to a fast westward jet at high latitudes of the northern hemisphere.</div></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":"363 ","pages":"Article 107352"},"PeriodicalIF":2.4,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143844796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrical and thermal conductivities of Fe–Ni–Si alloy under core conditions: A reevaluation 铁-镍-硅合金在堆芯条件下的电导率和导热率:再评价
IF 2.4 3区 地球科学
Physics of the Earth and Planetary Interiors Pub Date : 2025-04-09 DOI: 10.1016/j.pepi.2025.107351
Kenji Ohta , Hayato Inoue , Sho Suehiro , Kei Hirose , Saori Kawaguchi-Imada , Haruhiko Dekura
{"title":"Electrical and thermal conductivities of Fe–Ni–Si alloy under core conditions: A reevaluation","authors":"Kenji Ohta ,&nbsp;Hayato Inoue ,&nbsp;Sho Suehiro ,&nbsp;Kei Hirose ,&nbsp;Saori Kawaguchi-Imada ,&nbsp;Haruhiko Dekura","doi":"10.1016/j.pepi.2025.107351","DOIUrl":"10.1016/j.pepi.2025.107351","url":null,"abstract":"<div><div>We present experimental results on the electrical resistivity (the inverse of electrical conductivity) of solid hexagonal close-packed (hcp) and liquid Fe–10 at.% Ni–22.5 at.% Si (Fe–11.8 wt% Ni–12.7 wt% Si) alloys under high-pressure and high-temperature conditions, corresponding to the Earth's outer core conditions, using a diamond anvil cell. We found minimal temperature dependence of the resistivity of the hcp Fe–Ni–Si alloy, indicating thermochemically-induced resistivity saturation. We also observed that the resistivity saturation reduced the extent of resistivity change during the melting transition. Based on our findings, we estimate an upper limit for the core resistivity of approximately 110 μΩcm (= 1.10 × 10<sup>−6</sup> Ωm) at the top of the outer core, corresponding to a lower limit for the electrical and thermal conductivities of approximately 9.2 × 10<sup>5</sup> Sm<sup>−1</sup> and 90 Wm<sup>−1</sup> K<sup>−1</sup>, respectively. Such high core conductivity is unavoidable and must be accounted for in understanding the Earth's thermal evolution.</div><div><em>“Extrapolation to core conditions of laboratory observations of electrical resistivities of iron and its alloys has been hampered by lack of understanding of interactions between the effects of temperature, pressure and impurities.”—F. D. Stacey and O.</em> L. <em>Anderson (2001).</em></div></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":"363 ","pages":"Article 107351"},"PeriodicalIF":2.4,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143835261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lithospheric structure beneath the Upper Indus Basin and its adjacent regions from inversion of surface wave dispersion 从面波频散反演研究上印度河盆地及其邻区岩石圈结构
IF 2.4 3区 地球科学
Physics of the Earth and Planetary Interiors Pub Date : 2025-03-27 DOI: 10.1016/j.pepi.2025.107345
Deepak Kumar , G. Suresh , M.L. Sharma , Siddharth Dey , S.C. Gupta
{"title":"Lithospheric structure beneath the Upper Indus Basin and its adjacent regions from inversion of surface wave dispersion","authors":"Deepak Kumar ,&nbsp;G. Suresh ,&nbsp;M.L. Sharma ,&nbsp;Siddharth Dey ,&nbsp;S.C. Gupta","doi":"10.1016/j.pepi.2025.107345","DOIUrl":"10.1016/j.pepi.2025.107345","url":null,"abstract":"<div><div>We propose an enhanced model of the crust and upper mantle structure beneath the Upper Indus Basin, derived from the combined inversion of Rayleigh and Love wave group velocity dispersion data from 164 seismic events recorded by 58 stations, covering periods from 4 to 100 s. By using the Genetic Algorithm approach within this joint inversion process, we developed a detailed shear wave velocity model for the region. The earthquakes were categorized into three clusters based on their epicentral locations, allowing for a detailed analysis beneath the western, central, and eastern segments of the Upper Indus Basin. The analysis shows a gradual increase in crustal thickness from the west to the east, with an average thickness of ∼61.8 km and a shear wave velocity ∼ 4.6 km/s. The Lithosphere-Asthenosphere Boundary (LAB) is identified at a depth of 160 km, indicated by a velocity decrease of about 1.6 %. Our results also reveal a sedimentary cover of ∼4 km and we postulate a felsic crust similar to southern Pamir, which could have resulted from the loss of mafic lower crust by lithospheric delamination or foundering due to gravitational instability. We state the absence of mid-crustal low velocity layer within the Basin and also discard the possibility of any requirement for radial anisotropy, based on the adequate fit of Rayleigh and Love the dispersion data with minimal uncertainty. The study provides a significant refinement of the crustal and upper mantle structure of the Upper Indus Basin, contributing valuable insights into regional tectonics.</div></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":"362 ","pages":"Article 107345"},"PeriodicalIF":2.4,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143725250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shared periodicities between the length of day and the geomagnetic field at millennial timescales 日长和地磁场在千年时间尺度上的共同周期性
IF 2.4 3区 地球科学
Physics of the Earth and Planetary Interiors Pub Date : 2025-03-27 DOI: 10.1016/j.pepi.2025.107350
M. Puente-Borque , F.J. Pavón-Carrasco , S.A. Campuzano , A. González-López , M. Folgueira , M.L. Osete
{"title":"Shared periodicities between the length of day and the geomagnetic field at millennial timescales","authors":"M. Puente-Borque ,&nbsp;F.J. Pavón-Carrasco ,&nbsp;S.A. Campuzano ,&nbsp;A. González-López ,&nbsp;M. Folgueira ,&nbsp;M.L. Osete","doi":"10.1016/j.pepi.2025.107350","DOIUrl":"10.1016/j.pepi.2025.107350","url":null,"abstract":"<div><div>The dynamics of Earth's outer core control the geomagnetic field and produce variations in the length of day (LOD). This phenomenon has been extensively studied at decadal and interannual scales but is still little known on the millennial timescale. Reconstructed variations in the length of day from ancient records of eclipses exhibit an oscillating component with a millennial period that cannot be explained by tidal effects, glacial isostatic adjustment or the ocean and atmospheric dynamics. In this work, frequency analysis and correlation techniques have been applied to LOD variations and to the dipole and quadrupole geomagnetic field provided by paleomagnetic reconstructions. We found that the non-tidal fluctuations of the LOD are correlated with the paleosecular variation of the Earth's magnetic field over the last three millennia. In particular, LOD maxima occur when the eccentric dipole shifts towards the Pacific region and the geocentric dipole becomes more axial, and LOD minima correspond to a more centred eccentric dipole and a more tilted geocentric dipole towards Atlantic region. These results provide new information about the coupling between the Earth's rotation and the paleosecular variation of the geomagnetic field on millennial time scales.</div></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":"362 ","pages":"Article 107350"},"PeriodicalIF":2.4,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143768158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the thermal evolution and magnetic field generation of planet Mercury 关于水星的热演化和磁场的产生
IF 2.4 3区 地球科学
Physics of the Earth and Planetary Interiors Pub Date : 2025-03-26 DOI: 10.1016/j.pepi.2025.107348
Jurrien Sebastiaan Knibbe , Attilio Rivoldini , Yue Zhao , Tim Van Hoolst
{"title":"On the thermal evolution and magnetic field generation of planet Mercury","authors":"Jurrien Sebastiaan Knibbe ,&nbsp;Attilio Rivoldini ,&nbsp;Yue Zhao ,&nbsp;Tim Van Hoolst","doi":"10.1016/j.pepi.2025.107348","DOIUrl":"10.1016/j.pepi.2025.107348","url":null,"abstract":"<div><div>Heat transfer through convection in Mercury's large core may be limited to a liquid layer between a solid inner core and a stably stratified outer liquid layer. Convection in the thin mantle may even have entirely stopped. Here, we consider the transition from convective to conductive heat transport in a coupled thermal evolution model of the mantle and core and assess implications for the generation of the magnetic field.</div><div>We argue that a conductive temperature profile best describes the temperature in regions of the core with a subadiabatic heat flux. Implementing an adiabat in these regions in a model of the evolution of the core, as is often done, implicitly assumes the existence of a mechanism that transports heat downward. Such a mechanism not only consumes power that could otherwise be available for sustaining dynamo action, but is also unlikely to be effective.</div><div>We show that a thermally convective layer deep in Mercury's liquid core below a thermally stratified layer is more likely to persist until present if light elements depress the liquidus of the core by several hundred degree compared to iron. Substantial partitioning of light elements into the liquid core can drive strong compositional convection in the upper part of Mercury's core, but this may not be in line with dynamo studies that are consistent with the observed magnetic field. Therefore, thermal evolution scenarios with light elements in the core that depress the core liquidus significantly but do not strongly fractionate into the core liquid are the most consistent with the present-day core dynamo.</div><div>Present-day dynamo action below a thermally stratified layer does not necessarily imply that the mantle is currently convective. If the mantle has a high concentration of radiogenic elements and a low viscosity, it must be convecting, but mantle convection can have ended before the present for a more viscous mantle with low concentration of radiogenic elements.</div></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":"363 ","pages":"Article 107348"},"PeriodicalIF":2.4,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143864632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Joint interpretation of potential field data using independent Lpq norm inversion and geological modeling: Application to Iron targeting in Central Iran 利用独立Lpq范数反演和地质建模联合解释势场数据:在伊朗中部铁矿找矿中的应用
IF 2.4 3区 地球科学
Physics of the Earth and Planetary Interiors Pub Date : 2025-03-24 DOI: 10.1016/j.pepi.2025.107347
Bardiya Sadraeifar , Reza Ghanati , Mohammad Hakim Rezayee , Maysam Abedi , Seyed Hossein Hosseini , Vahid E. Ardestani
{"title":"Joint interpretation of potential field data using independent Lpq norm inversion and geological modeling: Application to Iron targeting in Central Iran","authors":"Bardiya Sadraeifar ,&nbsp;Reza Ghanati ,&nbsp;Mohammad Hakim Rezayee ,&nbsp;Maysam Abedi ,&nbsp;Seyed Hossein Hosseini ,&nbsp;Vahid E. Ardestani","doi":"10.1016/j.pepi.2025.107347","DOIUrl":"10.1016/j.pepi.2025.107347","url":null,"abstract":"<div><div>Solving applied geophysical inverse problems using the <span><math><msub><mi>L</mi><mi>pq</mi></msub></math></span> norm (mixed <span><math><msub><mi>L</mi><mi>p</mi></msub></math></span>norm) is a well-established deterministic method, particularly in potential-field inversions. This approach minimizes the objective function by integrating <span><math><msub><mi>L</mi><mi>p</mi></msub></math></span> norms (<span><math><mn>0</mn><mo>≤</mo><mi>p</mi><mo>≤</mo><mn>2</mn></math></span>) for the smallness and smoothness terms in the regularization function, offering high flexibility in controlling the sparsity and smoothness of the recovered models. This study focuses on the computational aspects and parameters of the model structure term that significantly influence the generation of density and susceptibility models. We investigate how different combinations of <span><math><msub><mi>L</mi><mi>p</mi></msub></math></span> norms and scaling constants for the smallness and smoothness terms affect the recovery of various geometrical structures and the delineation of iron ore resources. The initial phase of our study involves testing these parameters using a synthetic model designed for gravity and magnetic susceptibility inversion, incorporating a complex dataset. Subsequently, we apply mixed <span><math><msub><mi>L</mi><mi>p</mi></msub></math></span> norm inversion with different norm combinations to ground-based potential field data from an iron ore deposit in the Bafq metallogenic belt, central Iran. This region is characterized by a reverse fault that has induced a north-south trend in hematite-magnetite mineralization. A key focus of this study is the impact of employing identical versus non-identical norms in the smoothness term of the model structure. By adjusting the level of compactness to match the target trend, we generate a geologically more interpretable model. Following the inversion, we assess the effectiveness of various combinations of <span><math><msub><mi>L</mi><mi>p</mi></msub></math></span> norm in delineating mineralized zones by comparing the inverted models to a lithological model obtained via co-kriging interpolation of borehole data. The results reveal significant hematite mineralization, with high-grade deposits predominantly located in the hanging wall of the fault and lower-grade deposits in the footwall. The magnetite mineralization, while less extensive, exhibits a spatial distribution similar to that of hematite, though it is typically shallower in comparison.</div></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":"362 ","pages":"Article 107347"},"PeriodicalIF":2.4,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143715064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strong compositional gradient in the Earth's inner core? 地球内核中强烈的成分梯度?
IF 2.4 3区 地球科学
Physics of the Earth and Planetary Interiors Pub Date : 2025-03-23 DOI: 10.1016/j.pepi.2025.107349
Hitoshi Gomi , Kei Hirose
{"title":"Strong compositional gradient in the Earth's inner core?","authors":"Hitoshi Gomi ,&nbsp;Kei Hirose","doi":"10.1016/j.pepi.2025.107349","DOIUrl":"10.1016/j.pepi.2025.107349","url":null,"abstract":"<div><div>Dynamic motions in the Earth's solid inner core driven by thermo-chemical buoyancy, such as plume convection and translation, have been proposed to explain seismic observations. The inner core should be chemically homogeneous if it is actively agitated. However, its high thermal conductivity may suppress such motions. Here we computed the equations of state for six hundred and ninety-three different Fe-Ni-Si-S-H alloys and compared their density (<em>ρ</em>) and bulk sound velocity (<em>V</em><sub>Φ</sub>) profiles with inner core seismic reference models. While such calculations were made at static conditions, we additionally calculated the Helmholtz energy by using the quasi-harmonic approximation to obtain the <em>ρ</em> and <em>V</em><sub>Φ</sub> of hexagonal close-packed (hcp) alloys under high temperatures relevant to the inner core. The results demonstrate that the changes in <em>ρ</em> of these hcp alloys along the inner core <em>P-T</em> profile are comparable to the radial <em>ρ</em> gradients shown by the PREM and AK135 models, but none of the Fe-Ni-Si-S-H alloys explain the gentle gradients in <em>V</em><sub>Φ</sub> of these reference models. Given that the PREM and AK135 models provide the correct <em>V</em><sub>Φ</sub> gradient, it suggests compositional stratification in the solid inner core, much stronger than can be developed upon crystallization from a homogeneous liquid outer core. The inner core might have crystallized from a chemically stratified liquid core (S-poor and H-rich toward the centre), which possibly formed as a result of liquid immiscibility between S-rich and H-rich liquids.</div></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":"362 ","pages":"Article 107349"},"PeriodicalIF":2.4,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143715058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信