{"title":"铁-镍-硅合金在堆芯条件下的电导率和导热率:再评价","authors":"Kenji Ohta , Hayato Inoue , Sho Suehiro , Kei Hirose , Saori Kawaguchi-Imada , Haruhiko Dekura","doi":"10.1016/j.pepi.2025.107351","DOIUrl":null,"url":null,"abstract":"<div><div>We present experimental results on the electrical resistivity (the inverse of electrical conductivity) of solid hexagonal close-packed (hcp) and liquid Fe–10 at.% Ni–22.5 at.% Si (Fe–11.8 wt% Ni–12.7 wt% Si) alloys under high-pressure and high-temperature conditions, corresponding to the Earth's outer core conditions, using a diamond anvil cell. We found minimal temperature dependence of the resistivity of the hcp Fe–Ni–Si alloy, indicating thermochemically-induced resistivity saturation. We also observed that the resistivity saturation reduced the extent of resistivity change during the melting transition. Based on our findings, we estimate an upper limit for the core resistivity of approximately 110 μΩcm (= 1.10 × 10<sup>−6</sup> Ωm) at the top of the outer core, corresponding to a lower limit for the electrical and thermal conductivities of approximately 9.2 × 10<sup>5</sup> Sm<sup>−1</sup> and 90 Wm<sup>−1</sup> K<sup>−1</sup>, respectively. Such high core conductivity is unavoidable and must be accounted for in understanding the Earth's thermal evolution.</div><div><em>“Extrapolation to core conditions of laboratory observations of electrical resistivities of iron and its alloys has been hampered by lack of understanding of interactions between the effects of temperature, pressure and impurities.”—F. D. Stacey and O.</em> L. <em>Anderson (2001).</em></div></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":"363 ","pages":"Article 107351"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrical and thermal conductivities of Fe–Ni–Si alloy under core conditions: A reevaluation\",\"authors\":\"Kenji Ohta , Hayato Inoue , Sho Suehiro , Kei Hirose , Saori Kawaguchi-Imada , Haruhiko Dekura\",\"doi\":\"10.1016/j.pepi.2025.107351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present experimental results on the electrical resistivity (the inverse of electrical conductivity) of solid hexagonal close-packed (hcp) and liquid Fe–10 at.% Ni–22.5 at.% Si (Fe–11.8 wt% Ni–12.7 wt% Si) alloys under high-pressure and high-temperature conditions, corresponding to the Earth's outer core conditions, using a diamond anvil cell. We found minimal temperature dependence of the resistivity of the hcp Fe–Ni–Si alloy, indicating thermochemically-induced resistivity saturation. We also observed that the resistivity saturation reduced the extent of resistivity change during the melting transition. Based on our findings, we estimate an upper limit for the core resistivity of approximately 110 μΩcm (= 1.10 × 10<sup>−6</sup> Ωm) at the top of the outer core, corresponding to a lower limit for the electrical and thermal conductivities of approximately 9.2 × 10<sup>5</sup> Sm<sup>−1</sup> and 90 Wm<sup>−1</sup> K<sup>−1</sup>, respectively. Such high core conductivity is unavoidable and must be accounted for in understanding the Earth's thermal evolution.</div><div><em>“Extrapolation to core conditions of laboratory observations of electrical resistivities of iron and its alloys has been hampered by lack of understanding of interactions between the effects of temperature, pressure and impurities.”—F. D. Stacey and O.</em> L. <em>Anderson (2001).</em></div></div>\",\"PeriodicalId\":54614,\"journal\":{\"name\":\"Physics of the Earth and Planetary Interiors\",\"volume\":\"363 \",\"pages\":\"Article 107351\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Earth and Planetary Interiors\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031920125000457\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Earth and Planetary Interiors","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031920125000457","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Electrical and thermal conductivities of Fe–Ni–Si alloy under core conditions: A reevaluation
We present experimental results on the electrical resistivity (the inverse of electrical conductivity) of solid hexagonal close-packed (hcp) and liquid Fe–10 at.% Ni–22.5 at.% Si (Fe–11.8 wt% Ni–12.7 wt% Si) alloys under high-pressure and high-temperature conditions, corresponding to the Earth's outer core conditions, using a diamond anvil cell. We found minimal temperature dependence of the resistivity of the hcp Fe–Ni–Si alloy, indicating thermochemically-induced resistivity saturation. We also observed that the resistivity saturation reduced the extent of resistivity change during the melting transition. Based on our findings, we estimate an upper limit for the core resistivity of approximately 110 μΩcm (= 1.10 × 10−6 Ωm) at the top of the outer core, corresponding to a lower limit for the electrical and thermal conductivities of approximately 9.2 × 105 Sm−1 and 90 Wm−1 K−1, respectively. Such high core conductivity is unavoidable and must be accounted for in understanding the Earth's thermal evolution.
“Extrapolation to core conditions of laboratory observations of electrical resistivities of iron and its alloys has been hampered by lack of understanding of interactions between the effects of temperature, pressure and impurities.”—F. D. Stacey and O. L. Anderson (2001).
期刊介绍:
Launched in 1968 to fill the need for an international journal in the field of planetary physics, geodesy and geophysics, Physics of the Earth and Planetary Interiors has now grown to become important reading matter for all geophysicists. It is the only journal to be entirely devoted to the physical and chemical processes of planetary interiors.
Original research papers, review articles, short communications and book reviews are all published on a regular basis; and from time to time special issues of the journal are devoted to the publication of the proceedings of symposia and congresses which the editors feel will be of particular interest to the reader.