Martha Baldwin, Nicholas A Meisel, Christopher McComb
{"title":"Smooth Like Butter: Evaluating Multi-lattice Transitions in Property-Augmented Latent Spaces.","authors":"Martha Baldwin, Nicholas A Meisel, Christopher McComb","doi":"10.1089/3dp.2023.0316","DOIUrl":"10.1089/3dp.2023.0316","url":null,"abstract":"<p><p>Additive manufacturing has revolutionized structural optimization by enhancing component strength and reducing material requirements. One approach used to achieve these improvements is the application of multi-lattice structures, where the macroscale performance relies on the detailed design of mesostructural lattice elements. Many current approaches to designing such structures use data-driven design to generate multi-lattice transition regions, making use of machine learning models that are informed solely by the geometry of the mesostructures. However, it remains unclear if the integration of mechanical properties into the dataset used to train such machine learning models would be beneficial beyond using geometric data alone. To address this issue, this work implements and evaluates a hybrid geometry/property variational autoencoder (VAE) for generating multi-lattice transition regions. In our study, we found that hybrid VAEs demonstrate enhanced performance in maintaining stiffness continuity through transition regions, indicating their suitability for design tasks requiring smooth mechanical properties.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"12 1","pages":"23-35"},"PeriodicalIF":2.3,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11937804/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143733212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Valdemar Danry, Cenk Guzelis, Lingdong Huang, Neil Gershenfeld, Pattie Maes
{"title":"From Words to Worlds: Exploring Generative 3D Models in Design and Fabrication.","authors":"Valdemar Danry, Cenk Guzelis, Lingdong Huang, Neil Gershenfeld, Pattie Maes","doi":"10.1089/3dp.2023.0309","DOIUrl":"10.1089/3dp.2023.0309","url":null,"abstract":"<p><p>The integration of artificial intelligence (AI) into the design and fabrication process has opened up novel pathways for producing custom objects and altered the traditional creative workflow. In this article, we present Depthfusion, a novel text-to-3D model generation system that empowers users to rapidly create detailed 3D models from textual or 2D image inputs, and explore the application of text-to-3D models within different fabrication techniques. Depthfusion leverages current text-to-image AI technologies such as Midjourney, Stable Diffusion, and DALL-E and integrates them with advanced mesh inflation and depth mapping techniques. This approach yields a high degree of artistic control and facilitates the production of high-resolution models that are compatible with various 3D printing methods. Our results include a biomimetic tableware set that merges intricate design with functionality, a large-scale ceramic vase illustrating the potential for additive manufacturing in ceramics, and even a sneaker-shaped bread product achieved by converting AI design into a baked form. These projects showcase the diverse possibilities for AI in the design and crafting of objects across mediums, pushing the boundaries of what is traditionally considered feasible in bespoke manufacturing.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"12 1","pages":"1-10"},"PeriodicalIF":2.3,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11937759/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143733099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xinjian Jia, Tongcai Wang, Yizhe Yang, Xiaodong Liu, Xin Li, Bingshan Liu, Gong Wang
{"title":"Multi-Image Fusion-Based Defect Detection Method for Real-Time Monitoring of Recoating in Ceramic Additive Manufacturing.","authors":"Xinjian Jia, Tongcai Wang, Yizhe Yang, Xiaodong Liu, Xin Li, Bingshan Liu, Gong Wang","doi":"10.1089/3dp.2023.0285","DOIUrl":"10.1089/3dp.2023.0285","url":null,"abstract":"<p><p>Vat photopolymerization is characterized by its high precision and efficiency, making it a highly promising technique in ceramic additive manufacturing. However, the process faces a significant challenge in the form of recoating defects, necessitating real-time monitoring to maintain process stability. This article presents a defect detection method that leverages multi-image fusion and deep learning for identifying recoating defects in ceramic additive manufacturing. In the image fusion process, multiple single-channel recoating images captured by monitoring camera positioned near the photopolymerization equipment are merged with curing area mask image to create a three-channel color image. The recoating images suffer from perspective distortion due to their side view. To facilitate fusion with the curing area image, image rectification technique is applied to correct the perspective distortion, transforming the side view recoating images into a top-down view. Subsequently, the fused images are processed using a channel-wise YOLO (You Only Look Once, CW-YOLO) method to extract features, enabling the distinction of various types of defects. When compared with other deep learning models, CW-YOLO achieves higher detection accuracy while maintaining a detection rate of 103.58fps, meeting the requirements for real-time detection. Furthermore, the paper introduces the F1 score as a comprehensive evaluation metric, capturing both detection accuracy and recall rate. The results show that the F1 score is enhanced by approximately 10% after image fusion, demonstrating that the proposed method can significantly improve defect detection, particularly in cases involving difficult-to-distinguish defects like material shortages and scratches.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"12 1","pages":"11-22"},"PeriodicalIF":2.3,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11937757/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143733140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"3D Bioprinting of Graphene Oxide-Incorporated Hydrogels for Neural Tissue Regeneration.","authors":"Jiahui Lai, Xiaodie Chen, Helen H Lu, Min Wang","doi":"10.1089/3dp.2023.0150","DOIUrl":"10.1089/3dp.2023.0150","url":null,"abstract":"<p><p>Bioprinting has emerged as a powerful manufacturing platform for tissue engineering, enabling the fabrication of 3D living structures by assembling living cells, biological molecules, and biomaterials into these structures. Among various biomaterials, hydrogels have been increasingly used in developing bioinks suitable for 3D bioprinting for diverse human body tissues and organs. In particular, hydrogel blends combining gelatin and gelatin methacryloyl (GelMA; \"GG hydrogels\") receive significant attention for 3D bioprinting owing to their many advantages, such as excellent biocompatibility, biodegradability, intrinsic bioactive groups, and polymer networks that combine the thermoresponsive gelation feature of gelatin and chemically crosslinkable attribute of GelMA. However, GG hydrogels have poor electroactive properties, which hinder their applications in neural tissue engineering where electrical conductivity is required. To overcome this problem, in this study, a small amount of highly electroactive graphene oxide (GO) was added in GG hydrogels to generate electroactive hydrogels for 3D bioprinting in neural tissue engineering. The incorporation of GO nanoparticles slightly improved mechanical properties and significantly increased electrical conductivity of GG hydrogels. All GO/GG composite hydrogels exhibited shear thinning behavior and sufficient viscosity and hence could be 3D printed into 3D porous scaffolds with good shape fidelity. Furthermore, bioinks combining rat bone marrow-derived mesenchymal stem cells (rBMSCs) with GO/GG composite hydrogels could be 3D bioprinted into GO/GG constructs with high cell viability. GO nanoparticles in the constructs provided ultraviolet (UV) shading effect and facilitated cell survival during UV exposure after bioprinting. The GO/GG composite hydrogels appear promising for 3D bioprinting applications in repairing damaged neural tissues.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"11 6","pages":"e2022-e2032"},"PeriodicalIF":2.3,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11669833/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142903991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marijan-Pere Marković, Ivan Karlo Cingesar, Domagoj Vrsaljko
{"title":"Maximizing Mechanical Performance of 3D Printed Parts Through Process Parameter Optimization.","authors":"Marijan-Pere Marković, Ivan Karlo Cingesar, Domagoj Vrsaljko","doi":"10.1089/3dp.2023.0170","DOIUrl":"10.1089/3dp.2023.0170","url":null,"abstract":"<p><p>The article discusses the importance of optimizing process parameters in 3D printing to achieve better mechanical properties of printed parts. It emphasizes the material extrusion 3D printing technology and some of the most commonly used materials, acrylonitrile butadiene styrene (ABS) and polyethylene terephthalate glycol (PETG). Optimizable process parameters such as, print angle, outer layer number, extruder flow ratio, extrusion (nozzle) temperature, and layer thickness are examined. The article also highlights the importance of postprocessing techniques, specifically thermal postprocessing (annealing) and chemical postprocessing in the acetone (AC) chamber, to enhance mechanical properties of printed parts. The results show that the wall structures played a crucial role in defining mechanical properties, acting as main load-bearing elements. Adjusted flow ratios influenced mechanical properties. Samples with a 25% extruder flow rate increase demonstrated a 44% rise in elongation at break, while a 50% increase led to slight strength reduction. The ABS material AC-treated sample exhibited 58.2% lower tensile strength and 1.9% lower elongation due to stress concentration, while thermally treated showed similar results to the default, printed at manufacturer-recommended settings. The PETG material AC-treated sample exhibited 53.2% lower tensile strength, but 17.5% higher elongation, while thermally treated showed similar results to the default. Samples printed at 0° orientation exhibited plastic deformation with the highest tensile strength and elongation, while samples at 45° and 90° orientations experienced delamination, leading to brittle fracture, proving that the orientation and interlayer adhesion have a great influence on mechanical properties. While the print settings and orientation had similar effects on mechanical properties of each material, postprocessing effects are greatly influenced by the polymer matrix.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"11 6","pages":"e2062-e2074"},"PeriodicalIF":2.3,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11669824/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142904000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jeongho Yang, Seong Je Park, Sang Hoon Kim, Si Mo Yeon, Kyung Il Kim, Yong Son, Parviz Kahhal, Jiyong Park, Sang-Hu Park
{"title":"Effective Spiral Laser Path for Minimizing Local Heating and Anisotropic Microstructures in Powder Bed Fusion Additive Manufacturing.","authors":"Jeongho Yang, Seong Je Park, Sang Hoon Kim, Si Mo Yeon, Kyung Il Kim, Yong Son, Parviz Kahhal, Jiyong Park, Sang-Hu Park","doi":"10.1089/3dp.2023.0065","DOIUrl":"10.1089/3dp.2023.0065","url":null,"abstract":"<p><p>Heat accumulation due to repetitive simple laser processing paths during building up a three-dimensional structure is a well-known issue that needs to be settled to reduce the excessively high residual stress and thermal deformation in a powder bed fusion (PBF) additive manufacturing process. Because of the dependency of laser path on the thermal dispersion, it is essential to analyze the heat accumulation phenomenon during laser processing. A computational fluid dynamics (CFD) analysis based on the volume of fraction method is used to optimize the laser path for minimizing the local heating up in the PBF process. In this work, a novel spiral laser path with optimal rotation angle is proposed and compared with the commonly used scanning paths. As the results, the accumulated temperature of the optimal spiral path shows a 200.9 K less compared with that of the general repetitive path. The thermal deformation of a cantilever structure made by the optimal spiral path is experimentally evaluated. From the experimental test, we verify that the spiral laser path reduces thermal deformation by 52.3% compared with the one made by the general one-directional laser path. This work based on numerical simulations and experiments utilizes the proposed spiral laser path to obtain higher precision, less residual stress, and more uniform microstructure of an additive-manufactured structure.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"11 6","pages":"e2033-e2044"},"PeriodicalIF":2.3,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11669831/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142903995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Radita Tyas Atsani Susanto, Brijesh Patel, Yu-Sheng Hsiao, Hsiu-Yang Tseng, Po Ting Lin
{"title":"Design Optimization of a 3D Microfluidic Channel System for Biomedical Applications.","authors":"Radita Tyas Atsani Susanto, Brijesh Patel, Yu-Sheng Hsiao, Hsiu-Yang Tseng, Po Ting Lin","doi":"10.1089/3dp.2023.0169","DOIUrl":"10.1089/3dp.2023.0169","url":null,"abstract":"<p><p>Microfluidic channel systems can be used for various biomedical applications, including drug administration, wound healing, cell culture research, and many others. A 3D microfluidic channel system has enormous potential over conventional microfluidic channel systems, including the capacity to simulate biological events in a laboratory setting. This system has the ability to recreate biological phenomena such as concentration gradient generators (CGGs). Microfluidic CGGs have complex fabrication when built into a 3D channel system. These complex systems can be built with complicated processes such as plasma bonding, which requires expensive setup and fine equipment. Therefore, in this study, a smart additive manufacturing technique is applied for an enormous review of the design and fabrication process, which is optimized for different operating conditions. This study employs a 3D printed removable channel mold to avoid the complex fabrication technique of microfluidic channels, allowing the direct casting of polydimethylsiloxane without extra bonding stages. The proposed design comprises dual mixing stages, incorporating a 3D mixer configuration and a converging output to attain the desired gradient outcome. Optimization is performed to achieve the best operating conditions by using response surface methodology, with channel dimension <math> <mfenced> <mrow> <msub><mrow><mi>L</mi></mrow> <mrow><mi>C</mi></mrow> </msub> </mrow> </mfenced> </math> and operating volumetric flow rate <math> <mfenced> <mrow> <msub><mrow><mi>Q</mi></mrow> <mrow><mi>C</mi></mrow> </msub> </mrow> </mfenced> </math> as individual variables to minimize the gradient gap value <math> <mfenced> <mrow> <msub><mrow><mi>G</mi></mrow> <mrow><mi>v</mi> <mi>a</mi> <mi>l</mi></mrow> </msub> </mrow> </mfenced> </math> . As a result, the optimal operating conditions are the combinations of 640 <math><mi>μ</mi> <mi>m</mi></math> channel dimensions and <math> <mrow><msup><mn>242</mn> <mrow><mi>mL</mi> <mrow><msub><mo>/</mo> <mrow><mi>hr</mi></mrow> </msub> </mrow> </mrow> </msup> </mrow> </math> operating volumetric flow rates, generating a stable and linear gradient value raise. A cost analysis was conducted to assess the fabrication expenses, revealing that the production cost of a sole 3D microfluidic channel is merely 1.42 USD.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"11 6","pages":"e2075-e2088"},"PeriodicalIF":2.3,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685786/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142916350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wen Peng, Cai Cheng, Jinwang Hu, Yami Liu, Minmin Li, Changhui Song, Wenqing Shi
{"title":"Evaluation of Treatment Effect and Mechanism Analysis of Ti6AL4V Porous Scaffolds Prepared by Selective Laser Melting with Different Chemical Polishing Processes.","authors":"Wen Peng, Cai Cheng, Jinwang Hu, Yami Liu, Minmin Li, Changhui Song, Wenqing Shi","doi":"10.1089/3dp.2023.0103","DOIUrl":"10.1089/3dp.2023.0103","url":null,"abstract":"<p><p>The large amount of unfused powder that remains on the surface of Ti6AL4V porous scaffolds prepared by selective laser melting technology is a common problem. Therefore, this article investigated the effects of three different chemical polishing processes on the surface state, pore structure, and mechanical properties of small pore size scaffold materials at different polishing times in the field of implantable medical devices. The results show that the overall treatment effect of the simple chemical polishing process is poor, the internal treatment depth of porous support is insufficient and uneven, and the overall mechanical properties of the sample with the same porosity are average. The outer structure during the electrochemical polishing process showed an obvious treatment effect. However, the internal treatment depth and uniformity were significantly lower compared with the simple chemical polishing process, and the overall mechanical properties of the sample with the same porosity were inferior. The overall treatment effect, depth, and uniformity of the inner and outer structure of the sample using a dynamic chemical polishing process were significantly optimized, and the overall mechanical properties of the sample with the same porosity were superior to the other two methods. Furthermore, the main reasons for the nonuniform treatment effect between the inner and outer layers during the chemical polishing of porous scaffolds were observed to be related to the restricted exchange of etchant caused by the complex internal structure of porous scaffolds and the gas generated by the chemical reaction.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":" ","pages":"1746-1757"},"PeriodicalIF":2.3,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683431/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46949394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Permeability and Porosity of Artificial-Similar Material for Biomimetic Geotechnical Engineering via Direct Ink Writing for Sustainability.","authors":"Sanqiang Xu, Kepeng Yang, Wei Xiong, Zheng Li, Liang Hao","doi":"10.1089/3dp.2023.0009","DOIUrl":"10.1089/3dp.2023.0009","url":null,"abstract":"<p><p>Direct ink writing of multiple mineral materials (M<sup>3</sup>) coupled with simulation analysis is an optimization solution in accordance with low-carbon and sustainable manufacturing. It improves the ability to imitate natural biological iterative optimization, and accurately obtained data for geological model tests to effectively help prevent natural disasters. This article investigates the effects of equivalent materials on the direct ink writing and permeability behaviors through geological simulation models. The mineral compositions provide adjustable cohesion and compression coefficient properties and considerably improve the stability and dispersion of slurry by adjusting parameters such as the viscosity, filling ratio, and deposition height. The upper limit of the permeability depends on the designed macropores and the printing accuracy because macro features provide pathways for rapid water infiltration into the printed specimen. This research establishes guidelines for the fabrication of components with tailored and designed-pore-dependent permeability properties that are primarily for slope geotechnical engineering applications.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":" ","pages":"1758-1767"},"PeriodicalIF":2.3,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683437/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47583438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiefei Huang, Fuchu Liu, Yingpeng Mu, Chi Zhang, Xin Liu, Guangchao Han, Zitian Fan
{"title":"Parameter Optimization and Precision Control of Water-Soluble Support Cores for Hollow Composite Castings Fabricated by Slurry Microextrusion Direct Forming Method.","authors":"Jiefei Huang, Fuchu Liu, Yingpeng Mu, Chi Zhang, Xin Liu, Guangchao Han, Zitian Fan","doi":"10.1089/3dp.2023.0136","DOIUrl":"10.1089/3dp.2023.0136","url":null,"abstract":"<p><p>The optimization of slurry content and forming process parameters has a significant effect in slurry microextrusion direct forming method. In this article, magnesium sulfate monohydrate (MgSO<sub>4</sub>) and polyvinylpyrrolidone (PVP) were used as raw materials to prepare the slurry, and the component ratios of the slurry and the optimization of its forming process were discussed. The optimum slurry content is 64 wt.% by mass of magnesium sulfate monohydrate and 36 wt.% by mass of binder consisting of PVP-EtOH. The process parameters that include printing speed, extrusion pressure, and the ratio of printing layer height to extrusion diameter were selected as influencing factors. The orthogonal experiment results show that a printing speed of 850 mm/min, an extrusion pressure of 250 kPa, and a layer height of 510 μm of the extrusion diameter are the optimized process parameters. Under the optimized printing parameters, the surface roughness of the prepared samples is 23.764 μm, with dimensional deviations of 0.71%, 0.77%, and 2.56% in the X, Y, and Z directions, respectively.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":" ","pages":"1768-1786"},"PeriodicalIF":2.3,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683436/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41531956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}