打印反应性生物材料的设计综述。

IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING
3D Printing and Additive Manufacturing Pub Date : 2025-04-14 eCollection Date: 2025-04-01 DOI:10.1089/3dp.2024.0004
Laia Mogas-Soldevila, Katia Zolotovsky
{"title":"打印反应性生物材料的设计综述。","authors":"Laia Mogas-Soldevila, Katia Zolotovsky","doi":"10.1089/3dp.2024.0004","DOIUrl":null,"url":null,"abstract":"<p><p>This review explores additive manufacturing (AM) strategies across disciplines for designing with responsive biomaterials and presents a vision of how printed responsive biomaterials (PRBs) can be integrated into everyday objects and buildings to enhance environmental and human health. Advancements in biomaterials science, biological materials manufacturing, synthetic biology, biomedical engineering, bio design, and living architecture are ushering in a new era characterized by multisensory interactions within everyday products and built environments. The material systems developed in recent research demonstrate the ability to interact with their environments through biological, chemical, or physical processes, yielding functionalities desirable in daily-use products. These include self-healing, health diagnostics, pathogen neutralization, adjustable stiffness, strain detection, threat visualization, shapeshifting, toxin trapping, stress correction, waste processing, and energy generation. Here we review examples of AM of biobased environmentally interactive materials using biopolymer composites, electrochemical and resistive devices, active molecules, bio sensors, living cells, spores, or cell-free sites, resulting in genetically active, and physical and chemical interactive systems. We highlight their robustness and evaluate their potential for scaling up into designs and architectures on Earth and beyond.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"12 2","pages":"155-168"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12038318/pdf/","citationCount":"0","resultStr":"{\"title\":\"Designing with Printed Responsive Biomaterials: A Review.\",\"authors\":\"Laia Mogas-Soldevila, Katia Zolotovsky\",\"doi\":\"10.1089/3dp.2024.0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This review explores additive manufacturing (AM) strategies across disciplines for designing with responsive biomaterials and presents a vision of how printed responsive biomaterials (PRBs) can be integrated into everyday objects and buildings to enhance environmental and human health. Advancements in biomaterials science, biological materials manufacturing, synthetic biology, biomedical engineering, bio design, and living architecture are ushering in a new era characterized by multisensory interactions within everyday products and built environments. The material systems developed in recent research demonstrate the ability to interact with their environments through biological, chemical, or physical processes, yielding functionalities desirable in daily-use products. These include self-healing, health diagnostics, pathogen neutralization, adjustable stiffness, strain detection, threat visualization, shapeshifting, toxin trapping, stress correction, waste processing, and energy generation. Here we review examples of AM of biobased environmentally interactive materials using biopolymer composites, electrochemical and resistive devices, active molecules, bio sensors, living cells, spores, or cell-free sites, resulting in genetically active, and physical and chemical interactive systems. We highlight their robustness and evaluate their potential for scaling up into designs and architectures on Earth and beyond.</p>\",\"PeriodicalId\":54341,\"journal\":{\"name\":\"3D Printing and Additive Manufacturing\",\"volume\":\"12 2\",\"pages\":\"155-168\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12038318/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3D Printing and Additive Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1089/3dp.2024.0004\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2024.0004","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

本综述探讨了跨学科的增材制造(AM)策略,用于设计响应性生物材料,并提出了如何将打印响应性生物材料(PRBs)集成到日常物品和建筑物中,以增强环境和人类健康的愿景。生物材料科学、生物材料制造、合成生物学、生物医学工程、生物设计和生活建筑的进步正在引领一个以日常产品和建筑环境中的多感官互动为特征的新时代。在最近的研究中开发的材料系统展示了通过生物、化学或物理过程与环境相互作用的能力,产生了日常使用产品所需的功能。这些包括自我修复、健康诊断、病原体中和、可调节刚度、应变检测、威胁可视化、变形、毒素捕获、应力校正、废物处理和能源产生。在这里,我们回顾了生物基环境相互作用材料的增材制造的例子,这些材料使用生物聚合物复合材料、电化学和电阻器件、活性分子、生物传感器、活细胞、孢子或无细胞位点,从而产生遗传活性和物理和化学相互作用系统。我们强调了它们的健壮性,并评估了它们在地球和其他地方扩展到设计和架构的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing with Printed Responsive Biomaterials: A Review.

This review explores additive manufacturing (AM) strategies across disciplines for designing with responsive biomaterials and presents a vision of how printed responsive biomaterials (PRBs) can be integrated into everyday objects and buildings to enhance environmental and human health. Advancements in biomaterials science, biological materials manufacturing, synthetic biology, biomedical engineering, bio design, and living architecture are ushering in a new era characterized by multisensory interactions within everyday products and built environments. The material systems developed in recent research demonstrate the ability to interact with their environments through biological, chemical, or physical processes, yielding functionalities desirable in daily-use products. These include self-healing, health diagnostics, pathogen neutralization, adjustable stiffness, strain detection, threat visualization, shapeshifting, toxin trapping, stress correction, waste processing, and energy generation. Here we review examples of AM of biobased environmentally interactive materials using biopolymer composites, electrochemical and resistive devices, active molecules, bio sensors, living cells, spores, or cell-free sites, resulting in genetically active, and physical and chemical interactive systems. We highlight their robustness and evaluate their potential for scaling up into designs and architectures on Earth and beyond.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
3D Printing and Additive Manufacturing
3D Printing and Additive Manufacturing Materials Science-Materials Science (miscellaneous)
CiteScore
6.00
自引率
6.50%
发文量
126
期刊介绍: 3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged. The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信