{"title":"打印反应性生物材料的设计综述。","authors":"Laia Mogas-Soldevila, Katia Zolotovsky","doi":"10.1089/3dp.2024.0004","DOIUrl":null,"url":null,"abstract":"<p><p>This review explores additive manufacturing (AM) strategies across disciplines for designing with responsive biomaterials and presents a vision of how printed responsive biomaterials (PRBs) can be integrated into everyday objects and buildings to enhance environmental and human health. Advancements in biomaterials science, biological materials manufacturing, synthetic biology, biomedical engineering, bio design, and living architecture are ushering in a new era characterized by multisensory interactions within everyday products and built environments. The material systems developed in recent research demonstrate the ability to interact with their environments through biological, chemical, or physical processes, yielding functionalities desirable in daily-use products. These include self-healing, health diagnostics, pathogen neutralization, adjustable stiffness, strain detection, threat visualization, shapeshifting, toxin trapping, stress correction, waste processing, and energy generation. Here we review examples of AM of biobased environmentally interactive materials using biopolymer composites, electrochemical and resistive devices, active molecules, bio sensors, living cells, spores, or cell-free sites, resulting in genetically active, and physical and chemical interactive systems. We highlight their robustness and evaluate their potential for scaling up into designs and architectures on Earth and beyond.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"12 2","pages":"155-168"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12038318/pdf/","citationCount":"0","resultStr":"{\"title\":\"Designing with Printed Responsive Biomaterials: A Review.\",\"authors\":\"Laia Mogas-Soldevila, Katia Zolotovsky\",\"doi\":\"10.1089/3dp.2024.0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This review explores additive manufacturing (AM) strategies across disciplines for designing with responsive biomaterials and presents a vision of how printed responsive biomaterials (PRBs) can be integrated into everyday objects and buildings to enhance environmental and human health. Advancements in biomaterials science, biological materials manufacturing, synthetic biology, biomedical engineering, bio design, and living architecture are ushering in a new era characterized by multisensory interactions within everyday products and built environments. The material systems developed in recent research demonstrate the ability to interact with their environments through biological, chemical, or physical processes, yielding functionalities desirable in daily-use products. These include self-healing, health diagnostics, pathogen neutralization, adjustable stiffness, strain detection, threat visualization, shapeshifting, toxin trapping, stress correction, waste processing, and energy generation. Here we review examples of AM of biobased environmentally interactive materials using biopolymer composites, electrochemical and resistive devices, active molecules, bio sensors, living cells, spores, or cell-free sites, resulting in genetically active, and physical and chemical interactive systems. We highlight their robustness and evaluate their potential for scaling up into designs and architectures on Earth and beyond.</p>\",\"PeriodicalId\":54341,\"journal\":{\"name\":\"3D Printing and Additive Manufacturing\",\"volume\":\"12 2\",\"pages\":\"155-168\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12038318/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3D Printing and Additive Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1089/3dp.2024.0004\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2024.0004","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Designing with Printed Responsive Biomaterials: A Review.
This review explores additive manufacturing (AM) strategies across disciplines for designing with responsive biomaterials and presents a vision of how printed responsive biomaterials (PRBs) can be integrated into everyday objects and buildings to enhance environmental and human health. Advancements in biomaterials science, biological materials manufacturing, synthetic biology, biomedical engineering, bio design, and living architecture are ushering in a new era characterized by multisensory interactions within everyday products and built environments. The material systems developed in recent research demonstrate the ability to interact with their environments through biological, chemical, or physical processes, yielding functionalities desirable in daily-use products. These include self-healing, health diagnostics, pathogen neutralization, adjustable stiffness, strain detection, threat visualization, shapeshifting, toxin trapping, stress correction, waste processing, and energy generation. Here we review examples of AM of biobased environmentally interactive materials using biopolymer composites, electrochemical and resistive devices, active molecules, bio sensors, living cells, spores, or cell-free sites, resulting in genetically active, and physical and chemical interactive systems. We highlight their robustness and evaluate their potential for scaling up into designs and architectures on Earth and beyond.
期刊介绍:
3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged.
The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.